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Spectral form factor in a random matrix theory
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In the theory of disordered systems the spectral form factorS(t), the Fourier transform of the two-level
correlation function with respect to the difference of energies, is linear fort,tc and constant fort.tc . Near
zero and neartc it exhibits oscillations which have been discussed in several recent papers. In problems of
mesoscopic fluctuations and quantum chaos a comparison is often made with a random matrix theory. It turns
out that, even in the simplest Gaussian unitary ensemble, these oscillations have not yet been studied there. For
random matrices, the two-level correlation functionr(l1 ,l2) exhibits several well-known universal properties
in the large-N limit. Its Fourier transform is linear as a consequence of the short-distance universality of
r(l1 ,l2). However the crossover near zero andtc requires one to study these correlations for finiteN. For this
purpose we use an exact contour-integral representation of the two-level correlation function which allows us
to characterize these crossover oscillatory properties. This representation is then extended to the case in which
the Hamiltonian is the sum of a deterministic partH0 and of a Gaussian random potentialV. Finally, we
consider the extension to the time-dependent case.@S1063-651X~97!08304-9#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

The properties of universality at short distance of corre
tion functions between eigenvalues for invariant random m
trix ensembles@1# were conjectured by Dyson@2# many
years ago. Modern applications to areas such as fluctua
in mesoscopic systems, randomly triangulated surfaces
quantum chaos@3# led many people to look again into thes
properties. Dyson’s short-distance universality was fina
understood@4,5# and also extended in several directions,
instance to smoothed correlation functions at arbitrary d
tances@4,6#, and also to noninvariant ensembles@7# such as
ensembles in which matrix elements are independent ran
variables@8#. In this work we consider Gaussian ensemb
of random Hermitian matrices in the presence of a nonv
ishing external source which breaks unitary symmetry.
particular we study a Fourier transform of the two-level c
relation function, the spectral form factorS(t). For the
Gaussian unitary ensemble, in the large-N limit, this form
factorS(t) has a simple linear behavior witht up to a criti-
cal valuetc52N, beyond which it becomes 1. This remar
able behavior is due to the short-distance universality of
two-level correlation functionr(l1 ,l2) @2#. In the problem
of quantum chaos, it is known that the level statistics
chaotic systems in a certain energy range, agrees with
result of a random matrix theory, and the linear behavior
S(t) has been derived by the method of perturbation of
riodic orbits @9#.

In this paper, we evaluate this spectral form factor with
the random matrix theory, in order to characterize the cro
over to the linear behavior in the large-N limit. We will
investigate the subdominant term, to the large-N limit, which
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has an oscillatory behavior. The motivation comes from
work of Kravtsov and Mirlin@10#, who showed that devia
tions to the Wigner-Dyson large-N correlation function were
present in the level statistics of a weakly disordered me
These oscillations, due to subdominant terms, are more
ible if we consider the derivative ofS(t) with respect tot,
since they become of the same order as the leading lin
term. We believe that these oscillatory terms neart50 and
t52N, although small, are relevant for discussions of c
rent interest on oscillations in disordered metals or in qu
tum chaos in nonuniversal regions@10–13#.

For a discussion of the crossover to the universal lin
behavior, we derive an exact expression for finiteN of
S(t) . Our analysis is based upon the recent calculation
the two-level correlation function@14#, in which the Kazakov
contour-integral representation@15# has been used. This rep
resentation has also been used recently for the Laguerre
semble; it made it easy to characterize the crossover beha
near the edge and near-zero energy for the density of s
@16#. Here we consider a similar crossover behavior for
two-level correlation function or the spectral form factor.

We also find, after averaging this form factor over t
energy, that the corresponding form factor^S(t)& is remark-
ably related, through a simple integration, to the density
stater(t) in the Laguerre ensemble; this density is known
possess a universal oscillatory behavior near the origin@16–
19#. We extend the form factor calculations to the tim
dependent case, which is shown to be equivalent to the t
matrix model. In this case, the singular behavior at
Heisenberg time is smeared out.

We further discuss matrix models with an external sou
for the correlation functions. We find interesting character
tic properties of the kernelKN(l,m), and its universal be-
havior. The kernelKN(l,m) has lines of zeros in the rea
(l,m) plane. We briefly study the zeros of the kernels in t
two-matrix model and in the model with external sour
@14#.

,
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II. UNIVERSAL BEHAVIOR OF THE FORM FACTOR

The two-level correlation functionr (2)(l,m) for the ran-
dom matrix model is defined by

r~2!~l,m!5 K 1NTrd~l2M !
1

N
Trd~m2M !L , ~2.1!

whereM is an N3N random Hermitian matrix, and th
bracket means an averaging with respect to the Gaus
distribution,

P~M !5
1

Z
expS 2

N

2
TrM2D . ~2.2!

The connected correlation functionrc
(2)(l,m) is obtained

by a subtraction of the disconnected part, which is a prod
of the density of statesr(l) andr(m). This function has a
complicated expression with strong oscillations, which si
plifies only in the short-distance limit, in which there are
finite number of levels betweenl andm, i.e., forN(l2m)
finite in the large-N limit. Introducing the scaling variable

x5pN~l2m!r~ 1
2l1 1

2m!, ~2.3!

and taking the large-N limit with a finite x, one finds@1#

rc
~2!~l,m!.

1

N
d~l2m!r~l!2r~l!r~m!

sin2x

x2
. ~2.4!

The spectral form factorS(t) is defined by

S~t!5E
2`

1`

dv eivtrc
~2!~E,E1v!. ~2.5!

Using the large-N, small-v limit, we have, leaving aside th
d-function term in Eq.~2.4!,

rc
~2!SE2

v

2
,E1

v

2 D.2
1

p2N2

sin2@pNvr~E!#

v2 .

~2.6!

Then the Fourier integral is evaluated easily, since

E
2`

1`

eivt
sin2~av!

v2 dv5H p

2
~2a2utu!, utu,2a

0, utu.2a.

~2.7!

This leads to

S~t!5H utu
2pN2 2

r~E!

N
, utu,2pNr~E!

0, utu.2pNr~E!.

~2.8!

Adding thed-function term of Eq.~2.4!, we find thatS(t)
vanishes fort50. From this result, we find that ift is of the
order ofN, then the integration overv is dominated by a
range of order 1/N, and therefore, the approximation o
r (2)(l,m) by its short-distance behavior~2.6! is justified.
However, ift is of the order of 1, then we have to deal wi
an integration over a range in whichv is not small, and we
can no longer use the short-distance universal behavior
an

ct

-

or

r (2)(l,m). Therefore, one expects a universal linear beh
ior in the range in whicht is of orderN.

In a previous paper@14# we derived the oscillating short
distance behavior of Eq.~2.6! by using a method introduce
by Kazakov. This method gives exact expressions of the c
relation functions for finiteN. It is very convenient for char-
acterizing the crossovers in comparison with the stand
approach based on orthogonal polynomials. It consists
adding a matrix source to the probability distribution, a
this external source is set to zero at the end of the calc
tion. ~In some cases one is interested in keeping a fin
external source, as studied recently in@14#!. We thus modify
the probability distribution of the matrix by a sourceA, an
N3N Hermitian matrix with eigenvalues (a1 , . . . ,aN):

PA~M !5
1

ZA
expS 2

N

2
TrM22N TrAM D . ~2.9!

We consider the average evolution operator with this mo
fied distribution

UA~ t !5 K 1NTreitM L . ~2.10!

The density of stater(l) is its Fourier transform

r~l!5E
2`

1` dt

2p
e2 i tlUA~ t !. ~2.11!

We first integrate over the unitary matrixV which diagonal-
izesM ~we may assume, without loss of generality, thatA is
a diagonal matrix!. This is done by the well-known Itzykson
Zuber integral@22#

E dVexp~TrAVBV†!5
det„exp~aibj !…

D~A!D~B!
, ~2.12!

whereD(A) is the Van der Monde determinant construct
with the eigenvalues ofA:

D~A!5)
i, j

N

~ai2aj !. ~2.13!

We are then led to

UA~ t !5
1

ZAD~A!

1

N (
a51

N E dr1•••drNe
itr aD~r 1 , . . . ,r N!

3expS 2
N

2( r i
22N( air i D . ~2.14!

After integrating over ther i , we obtain

UA~ t !5
1

N (
a51

N

)
gÞa

S aa2ag2~ i t /N!

aa2ag
De2~ t2/2N!2 i taa.

~2.15!

Instead of summing overN terms, one can write a contou
integral in the complex plane,
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UA~ t !52
1

i t R du

2p i )g51

N S u2ag2~ i t /N!

u2ag
De2 i tu2~ t2/2N!.

~2.16!

We may now, and only at this stage, let theag go to zero; we
obtain

U0~ t !52
1

i t
e2t2/2N R du

2p i
e2 i tuS 12

i t

NuD
N

. ~2.17!

Similarly the two-level correlation function,r (2)(l,m) is
obtained from the Fourier transformUA(t1 ,t2), after letting
A go to zero@14#,

r~2!~l,m!5E E dt1dt2
~2p!2

e2 i t1l2 i t2mU0~ t1 ,t2!,

~2.18!

whereUA(t1 ,t2) is

UA~ t1 ,t2!5 K 1NTreit1M 1

N
Treit2M L . ~2.19!

The same procedure leads to

UA
~2!(t1 ,t2)5

1

N2 (
a1 ,a2

E ) dri
D~r !

D~A!

3e2N([ ~1/2!r i
2
1r iai ]1 i ~ t1ra1

1t2ra2
!. ~2.20!

By integration overr i , we obtain, after subtraction of th
disconnected part, a representation in terms of an inte
over two complex variables

U0~ t1 ,t2!52
1

N2 R du dv
~2p i !2

e2~ t1
2/2N!2~ t2

2/2N!2 i t1u2 i t2v

3S 12
i t 1
NuD

NS 12
i t 2
Nv D

N

3
1

~u2v2 i t 1 /N!@u2v1~ i t 2 /N!#
~2.21!

where the contours are taken aroundu50 andv50. If we
let the contour include the pole,v5u2 i t 1 /N, it gives pre-
cisely the disconnnected termU0(t11t2), whose Fourier
transform is thed-function part of Eq.~2.4!.

We now write the two-level correlation function as th
Fourier transform ofU0(l1 ,l2). In order to show that it
takes a factorized form, we shift the variablest1 and t2 to
t1→t12 iuN and t2→t22 ivN. Then one finds

rc~l1 ,l2!5
1

N2E dt1
2p R dv

2p i S i t 1Nv D
N

~2.22!

3
1

v1
i t 1
N

e2~N/2!v22~ t1
2/2N!2 i t1l12Nvl2

3E dt2
2p R du

2p i S i t 2NuD
N

al

3
1

u1
i t 2
N

e2~N/2!u22~ t2
2/2N!2 i t2l22Nul1

52
1

N2KN~l1 ,l2!KN~l2 ,l1!.

We have obtained the integral representation for the ke
KN(l,m),

KN~l,m!52E
2`

` dt

2p R du

2p i S 2
i t

NuD
N

3
1

u1
i t

N

e2~N/2!u22~1/2N!t22 i tl2Num. ~2.23!

It may be interesting to note that the same integral exp
sion is obtained through the orthogonal polynomial meth
In Appendix A, we give this derivation. A similar formula
has been obtained by Guhr@21#, who used the method o
integration over Grassmannian variables. At this stage
formalism does not provide more information, but we sh
see later that it may be extended to the much more diffic
problem of a nonzero external source.

The expression ofKN(l1 ,l2) may be simplified further
by the shiftt1→t1 ivN,

KN~l1 ,l2!5E dt

2p R dv
2p i

3
1

i t S 12
i t

Nv D
N

e2~ t2/2N!2 ivt2 i tl11Nv~l12l2!.

~2.24!

We may now find the short-distance behavior
r (2)(l1 ,l2) in the large-N limit with a finite value of the
variabley5N(l12l2). There are several procedures to o
tain the oscillating universal form. One possibility has be
discussed in@14#. Here we follow another procedure for th
purpose of later use. If we substitute tov, v→ i tv, we may
then perform thet integration

KN~l1 ,l2!

5
1

2p R dv
2p i S p

1

2N
2v D 1/2

e2@~vy2l1!2#/2@~1/N!22v#2~1/v !

3S 12
1

Nv D
N

. ~2.25!

In the large-N limit, we may neglect 1/N terms, and expo-
nentiate the term which is a power ofN. We obtain
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KN~l1 ,l2!

.2
i

2p R dv
2p i S p

v D 1/2e~y2/4!v2[12~l1
2/4!]/v1~l1y/2!.

~2.26!

We change the contour in the complex plane, and we use
following result:

K1/2~z!5E
0

`

e2zcosh xcosh
x

2
dx5S p

2zD
1/2

e2z, ~2.27!

whereK1/2(z) is a modified Bessel function. Then we obta

KN~l1 ,l2!.
1

py
e~l1/2!ysinFyS 12

l1
2

4 D 1/2G . ~2.28!

The other termKN(l2 ,l1) is obtained in a similar way. Thu
in the large-N, finite-y, limit, we obtain

r~l1 ,l2!52
e2[ ~l12l2!/2]y

p2y2
sinSA42l1

2

2
yD sinSA42l2

2

2
yD

.2
1

p2y2
sin2SA42l1

2

2
yD . ~2.29!

We also derive a more precise expression for the ke
KN(l1 ,l2) from Eq. ~2.22!. We have

KN~l1 ,l2!5E dt

2p R dv
2p i S i t

Nv D
N

3
1

v1
i t

N

e2~N/2!v22~ t2/2N!2 i tl12Nvl2

5NE dt

2p R dv
2p i

i N

v1 i t
e2Nf, ~2.30!

where f is

f5
v2

2
1
t2

2
1 i tl11vl22 lnt1 ln v. ~2.31!

The saddle-point equations forf become

] f

]v
5v1l21

1

v
50,

] f

]t
5t1 il12

1

t
50, ~2.32!

Four solutions are obtained:v5 ieiw, v52 ie2 iw, t5e2 iu,
and t52eiu. We definel152 sinu and l252 sinw. The
Gaussian fluctuation around the saddle point is evaluate

1

S ]2f

]v2
D 1/25

e6~ i /2!w

A2 cosw
~2.33!
he

el

by

1

S ]2f

]t2
D 1/25

e6~ i /2!u

A2 cosu
.

Adding these four saddle-point contributions, we have

KN~l1 ,l2!

5
e~N/2!~cos2u2cos2w!

8pNAcosucosw

3F2

cosFNS u1w1
sin2u

2
1
sin2w

2 D Gcos12 ~u1w!

11cos~u1w!

1
sin@N~u2w1 1

2 sin2u2 1
2 sin2w!#sin12 ~u2w!

12cos~u2w!
G .
~2.34!

Whenl12l2 is order of 1/N, we make approximations in
Eq. ~2.34!,

u2w1
sin2u

2
2
sin2w

2
.sin~u2w!1~sinu2sinw!cosu

.p~l12l2!r~l1!, ~2.35!

where r(l1)5A42l1
2/2p, and the denominator of Eq

~2.34! is approximated as 12cos(u2w).1/2sin2(u2w).
Then, in the large-N limit for fixed N(l12l2) we obtain the
short-range universal form of Eq.~2.29!. Later we will dis-
cuss the generalization of Eq.~2.34! to the time dependen
case.

We now consider the form factorS(t), which is defined
by Eq. ~2.5!. From the expressions ofKN(0,v) and
KN(v,0) in Eq. ~2.25!, we have

S~t!5
1

2p
E dv R du dv

~2p i !2
eivt

A1

N
22uA1

N
22v

3e2~N2v2v2!/2[~1/N!22v]2[v2~Nu21!2]/2[ ~1/N!22u]

3S 12
1

Nu
D NS 12

1

Nv
D N. ~2.36!

In the large-N limit, if t is of the order ofN, we may use
the previous expressions for rederiving the universal sh
distance behavior in Eq.~2.29!, and obtain the linear behav
ior up tot52N. However, for finiteN, this function is com-
plicated, and we need the study of the oscillating part ba
on Eq.~2.36!.

III. OSCILLATORY BEHAVIOR OF THE FORM FACTOR

We first integrate outv in Eq. ~2.36!, and by shifting
u→(1/N)u andv→(1/N)v, we obtain
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S~t!5
1

A2pN2
R du dv

~2p i !2
e2t2/2ND

3
1

Av2~122u!1~u21!2~122v !

3S 12
1

u
D NS 12

1

v
D N, ~3.1!

whereD is given by

D5
v2

122v
1

~u21!2

122u
. ~3.2!

A quasilinear behavior with small oscillations follow
from this expression. It is interesting first to compute th
contour integral~3.1! for finite N. We have evaluated, fo
example, theN57 case. The correction to the linear beha
ior is small, but the derivative ofS(t) with respect tot
shows an oscillating behavior. Returning to the analytic c
culation we can obtain exact expressions for this oscillat
behavior by a saddle-point analysis of Eq.~3.1!. For this
purpose, we scalet by t5Nt̃. Then we have

S~t!5
1

A2pN2
R du dv

~2p i !2

3
1

Av2~122u!1~u21!2~122v !
e2Nf, ~3.3!

where the exponentf is

f5
t̃ 2

2D
2 lnS 12

1

uD2 lnS 12
1

v D . ~3.4!

In the largeN limit, we look for the saddle points ofu and
v in the complex plane. They are obtained by

] f

]u
50,

] f

]v
50. ~3.5!

We thus obtain the two equations

~122u!2

u2~12u!2
5

t̃ 2

D2 ,
~122v !2

v2~12v !2
5

t̃ 2

D2 . ~3.6!

As solutions of these equations, we have

122u

u~12u!
56

122v
v~12v !

. ~3.7!

There are four solutions to these equations, but two of th
only are saddle points:~a! for the~1! case,u5v; and~b! for
the ~2! case,u5v/(2v21). Althoughv5(12u)/(122u)
for the ~1! case andv512u for the ~2! case are solutions
they are not saddle points, sinceD vanishes. Case~a!,
u5v, still leaves us with four different solutions. The fir
one is
-

l-
y

m

u5v5
1

2
1

i

2 S 22 t̃

21 t̃ D 1/2. ~3.8!

The three other solutions are obtained by the replacem
i→2 i and t̃→2 t̃. Therefore, it is sufficient to consider th
first case explicitly, and make the necessary replacemen
the end for the other solutions. The quantityD becomes

D5
i t̃

A42 t̃ 2
. ~3.9!

For this saddle point,f becomes

f5 i @2u2sin~2u!#22p i , ~3.10!

where we have putt̃52cosu. The fluctuation around this
saddle point is obtained by the consideration of the sec
derivatives with respect tou andv. They are

]2f

]u2
5

]2f

]v2
5
2i ~21 t̃ !3/2

A22 t̃
S 2t̃ 2 t̃ D ,

~3.11!

]2f

]u]v
5
4i

t̃

~21 t̃ !3/2

~22 t̃ !1/2
.

The Gaussian fluctuations around the saddle point prod
the inverse of the square root of a determinant, which is

detf 95S ]2f

]u2D
2

2S ]2f

]u]v D
2

54~21 t̃ !4. ~3.12!

Thus from this result we obtain

S~t!;
e2 iN~2u2sin2u!

A122uA122vADAdet f 9N3

;
i

2

1

A2i sin2u~212 cosu!N3
e2 iN~2u2sin2u!.

~3.13!

We now add the other solutions by making the replaceme
i→2 i andt̃→2 t̃, which corresponds tou→u1p. Adding
these terms, we have

Sa~t!5

cosS p

4
2N~2u2sin2u!D
N3A2 sin2u

3F 1

~212 cosu!
1

1

~222 cosu!
G , ~3.14!

where t̃52cosu; thus u50 corresponds tot̃52, while
u5p/2 corresponds tot̃50.

Case~b! is quite similar. We have

u5
1

2
1

i

2 S 22 t̃

21 t̃ D 1/2, v5
1

2
2

i

2 S 21 t̃

22 t̃ D 1/2. ~3.15!
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Using the notationt̃52 cosu, we obtain

f5 i ~2u2sin2u!2p i ~3.16!

and

D5
i t̃

A42 t̃ 2
~3.17!

detf 9 becomes

detf 95S ]2f

]u2D
2

2S ]2f

]u]v D
2

54~42 t̃ 2!2. ~3.18!

Adding the four terms obtained byt̃→2 t̃ and i→2 i , we
have

Sb~t!5

cosSN~2u2sin2u!2Np2
p

4 D
2At̃N3~42 t̃ 2!3/4

. ~3.19!

From these analyses, we obtain the oscillating part
S(t) in the large-N limit. It is a sum ofSa(t) andSb(t).
Noting that the linear part ofS(t) in Eq. ~2.8! is of the order
t/N25 t̃/N, we find that the oscillating part is a nothing b
a correction of order 1N. However, if we take a derivative, i
becomes of the same order as the linear term. We also
that whent̃ is close to 2, the coefficient of the oscillatin
part of S(t) becomes large, as shown in Eqs.~3.14! and
~3.19!, and even diverges att̃52. Therefore, there should b
again a crossover near the criticaltc52N. Up to now we
have considered a fixed energyE50. In Sec. IV, we will
instead take an average overE, and see that the expressio
for the form factor simplifies.

IV. AVERAGE OF THE FORM FACTOR

We will now consider the average ofS(t) over E, by
simply integrating overE,

^S~t!&5E
2`

1`

dES~t!. ~4.1!

Remarkably, we find that thiŝS(t)& is given analytically in
terms of known functions.

From Eqs.~2.5! and ~2.18!, S(t) is written as

S~t!5E dv eivtr~E,E1v!5E dt1e
2 i t1E2 i tEU0~ t1 ,t!.

~4.2!

Thus the integration overE gives simply

^S~t!&5E dEE dt1e
2 i ~ t11t!EU0~ t1 ,t!5U0~2t,t!.

~4.3!

Then we write the following contour-integral representati
for ^S(t)& from Eq. ~3.19!:
f

nd

^S~t!&5
1

N2e
2t2/N R du dv

~2p i !2
e2 i t~u2v !S 12

i t

NuD
N

3S 11
i t

Nv D
N 1

S u2v2
i t

N D 2 . ~4.4!

Replacingu by t u andv by t v, and puttingt25x, we have

^S~x!&5
1

N2 R du dv
~2p i !2

e2 ix[u2v2~ i /N!]

S u2v2
i

ND 2 S 12
i

NuD
N

3S 11
i

Nv D
N

. ~4.5!

Taking two derivatives with respect tox, we obtain a simple
factorized expression

d2^S~x!&
dx2

52
e2x/N

N2 R du

2p i
e2 ixuS 12

i

NuD
N R dv

2p i
eixv

3S 11
i

Nv D
N

52
e2x/N

N2 F ddxLNS xND G2, ~4.6!

whereLN(x) is a Laguerre polynomial. Remarkably enoug
an identical expression has been found earlier, but for a c
pletely different ensemble and a different quantity. Inde
expression~4.6! has been found in previous work on th
Laguerre ensemble of random matrices@16#, in which it was
the derivative of the density of state. The Laguerre ensem
also called the chiral Gaussian unitary ensemble~CHGUE!,
since eigenvalues appear by pairs of opposite signs, thus
a curious relation to the Gaussian unitary ensemble~GUE!:
the form factor^S(t)& in the GUE is related, for any finite
N, to the density of stater(t) of the CHGUE. We have no
been able to find a direct proof of this exact relation valid
any finiteN, without calculating both expressions and ve
fying that they are identical.

The oscillating behavior of Eq.~4.6! is similar to that of
S(t). This oscillation in^S(t)& is slightly different from the
proposal by Kravtsov and Mirlin@10#, which is a simple
sin(t) oscillation. Our result~4.6! is not a sine oscillation.
The oscillating behavior of the density of state for the L
guerre ensemble near the origin can be seen in Fig. 2 of@17#.
In the large-N limit, we know that the oscillations of the
density of state near zero energy become universal, and
given in terms of Bessel functions. In view of the previo
correspondence we now have to consider the variablet as an
energy~although it is a time in the GUE problem!. Near zero
energy, the density of state of the Laguerre ensemble is g
by

r~t!5t@J0
2~t!1J1

2~t!#, ~4.7!

and it shows an oscillating behavior around 1. Consequen
one understands that the integral of this density of stat
proportional tot. This is why we have obtained a linea
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behavior for^S(t)&. However, since the density of state f
largeN is a semicircle, and not a constant, its integral is
longer proportional tot. Indeed, in the large-N limit, by
integrating the semicircle line, we have

^S~t!&5E
0

t

dxF12S x

2ND 2G1/2

5

tA12S t

2ND 2
4N

1

arcsinS t

2ND
2

. ~4.8!

Beyond the critical valuet52N, it remains equal to 1, and i
approaches this limit smoothly. Therefore, taking into a
count the fact that the density of state is not constant,
singularity is smoothed out. Near zero energy, the oscillat
behavior of^S(t)&, following from the Bessel functions o
Eq. ~4.7!, becomes universal. In@16#, by the same contour
integral representation, we showed that there is a cross
from the bulk to the zero-energy region, which is describ
universally by function~4.7!. We have also found, in a
model consisting of a lattice of coupled matrices, that t
oscillating behavior is model independent. Neart52N, the
crossover behavior has been also studied in@16#. It is given
by the square of an Airy function@see Eq.~3.37! of @16##;
this crossover is also known to be universal.

V. TIME-DEPENDENT CASE

We now proceed to investigate the time-dependent co
lation function and its Fourier transform, the dynamical fo
factor. In the large-N limit, the universal form of this time-
dependent correlation function has been discussed@23–25#.
We will consider this problem by the contour integral rep
sentation, which is valid for finiteN, and evaluate the form
factorS(t) for a fixed timet. For a finitet, we will find that
S(t) shows different behavior compared to the previous
ear behavior aboutt.

We consider theN3N Hermitian matrixM , which de-
pends upon a timet. The time-dependent correlation functio
is defined by

r~l,m;t !5 K 1NTrd@l2M ~ t1!#
1

N
Trd@m2M ~ t2!#L ,

~5.1!

where t5t12t2, and t1 and t2 are different times. This is
written as a Fourier transform of the following quanti
U(a,b):

U~a,b!5
1

N2^Tre
iaM ~ t1! TreibM ~ t2!&. ~5.2!

We use a set of variablesa andb for the Fourier transform
variables, instead oft1 and t2. To avoid the confusion, we
uset1 and t2 as time.

We show exactly that the correlation function~5.1! re-
duces to the correlation function of the two-matrix model
the Gaussian ensemble; thec51 problem is described by th
two-matrix model. This correspondence may be derived
other arguments@26#. Here we follow the path-integra
o

-
e
y

er
d

s

e-

-

-

y

method, which can show explicitly that this equivalence
two-matrix model holds for any finiteN.

By considering the HamiltonianH,

H5 1
2 Tr~p

21M2!, ~5.3!

wherep5Ṁ andM is anN3N Hermitian matrix, we write
U(a,b) in Eq. ~5.2! as

U~a,b!5
1

N2^0ueHt1~TreiaM !eH~ t22t1!~TreibM !e2Ht2u0&.

~5.4!

We use the path-integral formulation, and define

^Aue2b̃HuB&5E
M ~ b̃ !5A,M ~0!5B

DMe2~1/2!Tr*0
b̃
~Ṁ21M2!dt.

~5.5!

ThenU(a,b) is expressed by

U~a,b!5
1

N2E dAdB̂ 0ueHt1uA&^Au~TreiaM !eH~ t22t1!

3~ treibM !uB&^Bue2Ht2u0&. ~5.6!

Noting that the ground-state energy of the free independ
N2 fermions isN2/2, we have

^0ueHt1uA&5e~N2/2!t1e2~1/2!TrA2. ~5.7!

The solution ofM̈5M , becomes

M ~ t !5Bcht1
sht

shb̃
~A2Bchb̃ !. ~5.8!

Then we are able to write the action in Eq.~5.5! by the
matricesA andB,

1
2 TrE

0

b̃
~Ṁ21M2!dt5 1

2 Tr~ṀM !u0
b̃

5
1

2shb̃
@~A21B2!chb̃22AB#. ~5.9!

Denotingb̃ by a timet, and taking the fluctuation part, w
obtain

U~a,b!5
1

N2 S etsht D
N2/2E dA dB~TreiaA!

3~TreibB!e2~1/2sht !Tr[ ~A21B2!et22AB] . ~5.10!

Thus the problem reduces exactly to a calculation of
correlation function for the two-matrix model, in which ma
tricesA andB are linearly coupled.

The correlation function for two-matrix model has be
studied by D’anna, Brezin, and Zee@27# by the orthogonal
polynomial method for finiteN. Although we can use thei
result, it is more convenient to use the contour integral r
resentation for the correlation function.
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By making the change of variables ofA, B, anda, b by
a factor Ae2tsht, we obtain a simple expression for E
~5.10!,

U~a,b!5
1

ZE dA dB TreiaA TreibBe2~1/2!Tr~A21B222cAB!,

~5.11!

where c5e2t. Note that we scaleda and b by a factor
Ae2tsht, the variablesl andm of the two-point correlation
function should be modified by this factor for the mapping
the time-dependent case to the two-matrix model. We n
go back to the notation in which two matrices are given
M1 andM2. We denote the matricesA andB in Eq. ~5.11!
byM1 andM2. We introduce the external matrixA, which is
coupled to matrixM1. The Gaussian distribution is given b

PA~M1 ,M2!5
1

ZA
e2H1,2,

~5.12!

H1,25
1
2 TrM1

21 1
2 TrM2

22cTrM1M21TrAM1 .

The density of stater(l) is given by the Fourier transform
of

UA~z!5 K 1NTreizM1L . ~5.13!

The calculation of thisr(l) is similar to the one-matrix case
The integration overM2, which has eigenvaluesj i , is per-
formed by the help of the Itzykson-Zuber formula. We d
note the eigenvalues ofM1 by r i . The integration overj
becomes

E dj)
i, j

~j i2j j !e
2~N/2!(j i

2
2cN(j i r i

5)
i, j

~r i2r j !e
~Nc2/2!(r i

2
. ~5.14!

Then we are left with the integration aboutr i ,
f
w
y

-

UA~z!5
1

D~A! (a51

N E dr)
i, j

~r i2r j !

3e2~N/2!~12c2!( i r i
2
2N( i ai r i1 izra. ~5.15!

Therefore, by the contour integration, we have, by letti
ai go to zero,

U0~z!52
A12c2

i t
R du

2p i

3S 12
iz

NuA12c2
D Ne2~ izu/A12c2!2[z2/2N~12c2!] .

~5.16!

We have the same density of state as the one-matrix
except for the scaling factor (12c2),

r~l!5A12c2r0~A12c2l!, ~5.17!

wherer0(l) is the density of state for the one-matrix mode
In the large-N limit, this density of state becomes

r~l!5
A12c2

2p
A42~12c2!l2, ~5.18!

which is normalized to be 1 by the integration.
The two-level correlation function is given by

r~2!~l,m!5E E dz1dz2
~2p!2

e2 iz1l2 iz2mU0~z1 ,z2!, ~5.19!

whereU0(z1 ,z2) is

U0~z1 ,z2!5 K 1NTreiz1M1
1

N
Treiz2M2L . ~5.20!

By integration over the eigenvaluesr i of M1, and j i of
M2, and keeping the eigenvaluesai of the external matrix
A, we have the following expression:
UA~z1 ,z2!5
1

N2 (
a1 ,a2

)
i, j

S ai2aj2
iz1
N

~d i ,a12d j ,a1
!2

iz2
cN

~d i ,a22d j ,a2
! D

)
i, j

~ai2aj !

3e2[ iz1 /~12c2!]aa1
2[ iz2c/~12c2!]aa2

2[z1
2/2N~12c2!]2[z2

2/2N~12c2!]2[cz1z2 /N~12c2!]da1 ,a2. ~5.21!

The double sum fora1 anda2 is divided into two parts. The parta15a2 is written by the contour-integral representation

UA
I ~z1 ,z2!52

1

iNS z11 z2
c D R du

2p i F12
i

Nu S z11 z2
c D GN

3e„2[ iz1/~12c2!] 2[ iz2c/~12c2!] …u2[z1
2/2N~12c2!]2[z2

2/2N~12c2!]2[cz1z2 /N~12c2!] . ~5.22!

The Fourier transform of this quantity becomes by the change of variableu to u@z11(z2 /c)#,
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r I~l,m!5
i

NE dz1dz2
~2p!2

R du

2p i S 12
i

NuD
N

e2 i ~z11z2c![z11~z2 /c!]u/~12c2!e2[ ~z1
2
1z2

2
12cz1z2!/2N~12c2!]2 iz1l2 iz2m. ~5.23!

This part is further simplified by the change of variablesz1 to (1/A12c2)(z12cz2) and z2 to (1/A12c2)(z22cz1). By
integration overz1, we have

r I~l,m!5
i

N

1

~12c2!2
e2 ~N/2! ~l2cm!2E dz

2p R du

2p i S 12
i

NuD
N

e2 imz1Nuz[m2~l/c!]e2[ i /~12c2!]uz22~N/2c2!u2z22[1/2N~12c2!]z2.

~5.24!

The remaininga1Þa2 part is given after lettingag go to zero,

U0~z1 ,z2!52
c

z1z2
R du dv

~2p i !2 S 12
iz1
NuD

NS 12
iz2
cNv D

NF 12
z1z2

cN2S u2v2
iz1
N D S u2v1

iz2
cND G

3e2[ iz1u/~12c2!]2[ iz2cv/~12c2!]2[z1
2/2N~12c2!]2[z2

2/2N~12c2!] . ~5.25!

This expression includes both a disconnected part and a connected part. The disconnected part has a factorized f
corresponds to the first term in the bracket. This term, indeed by shiftingv→v/c, becomes the product of the density of sta
r(l) andr(m). Therefore, after subtracting this disconnected part, we obtain the connected part

U0~z1 ,z2!52
1

N2 R dudv
~2p i !2 S 12

iz1
NuD

NS 12
iz2
cNv D

N 1

S u2v2
iz1
N D S u2v1

iz2
cND

3e2[ iz1u/~12c2!]2[ iz2vc/~12c2!]2[z1
2/2N~12c2!]2[z2

2/2N~12c2!] , ~5.26!
le
q
ol

io
-
er

-

where the contour integrals are taken aroundu50 and
v50. If we include the contour integration around the po
v5u2 iz1/N, we obtain precisely the same term as E
~5.22!. Therefore we use this representation for the wh
expression, including the term of Eq.~5.21!, by taking the
contour around bothv50 andv5u2 iz1 /N.

The expression for the two-matrix connected correlat
function rc

(2)(l,m), which is obtained by the Fourier trans
form of U0(z1 ,z2), has a factorized form when we consid
the contribution fromu50 andv50. If z1 and z2 are re-
placed byz15z12 iuN andz25z22 ivcN, we have a mul-
tiplicative form

rc
~2!~l,m!52 R du

2p i E dz2
2p S z2

cuND N 1

u1
iz2
cN

3e2[Nu2/2~12c2!]2[z2
2/2N~12c2!]2 iz2m2uNl

3 R dv
2p i E dz1

2p S z1vND N 1

v1
iz1
N

3e2[v2c2N/2~12c2!]2[z1
2/2N~12c2!]2 iz1l2vcmN.

~5.27!

We write this expression as

r II ~l,m!52KN~l,m!K̄N~l,m!. ~5.28!
.
e

n

We find the previous first partr I(l,m) of Eq. ~5.24! is also
expressed by

r I~l,m!5
1

N
KN~l,m!e2~N/2!~l2cm!2, ~5.29!

whereKN(l,m) is given by

KN~l,m!5 i N~2 iN ! R du

2p i E dz

2p S 12
i

uND N
3e2~Nu2z2/2c2!2[ iuz2/~12c2!]1zumN2 izm

3e2~Nluz/c!2[z2/2N~12c2!] . ~5.30!

This kernelKN(l,m) is written as a sum of Hermite polyno
mialsHn(x),

KN~l,m!5e2 ~N/2! ~12c2!m2 1

N(
n50

N21
1

cn
Hn~bl!Hn~bm!

n!
,

~5.31!

whereb 5 A(N/2)(12c2). The other kernelK̄N(l,m) is
given

K̄N~l,m!5
1

N
e2~N/2!~12c2!l2(

n50

N21

cn
Hn~bl!Hn~bm!

n!
.

~5.32!

It follows from these expressions thatr I(l,m) and
r II (l,m) are invariant under exchange ofl andm. The ex-
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pressions of Eqs.~5.28! and ~5.29! for the correlation func-
tion by the kernelKN(l,m) agree with the result obtained b
the method of orthogonal polynomials@27#. The only differ-
ence is the exponential Gaussian factor inKN(l,m) and
K̄N(l,m), and this difference disappears for the product
these two kernels.

In the large-N limit, we expect to recover the usual un
versality. We return to the expression of Eq.~5.26!, and ne-
glect the termsiz1 /N and iz2 /cN in the denominator. We
then exponentiate the powers ofN. The integrals overz1 and
z2 are Gaussian, and this leads to

r II ~l,m!5
~12c2!

2pN R du dv
~2p i !2

1

~u2v !2

3e2[N/2~12c2!] „u1[ ~12c2!/u]1~12c2!l…2

3e2
N

2~12c2!
„vc1[ ~12c2!/cv]1~12c2!m…2

5
~12c2!

2pN R du dv
~2p i !2

1

~u2v !2
e2N[ f1~u!1 f2~v !] .

~5.33!

We use the saddle points ofu(l) andu(m), which are the
solutions of] f 1]u50 and] f 2]v50, i.e.,

u21l~12c2!u1~12c2!50,

~5.34!

v21
12c2

c
mv1

12c2

c2
50.

Taking into account the fluctuations around the saddle po
we have

r II ~l,m!52
12c2

2p2N2 (
1

@u~l!2v~m!#2
1

S ]2f 1
]u2

]2f 2
]v2 D 1/2,

~5.35!

where the sum is taken over four different saddle points; n
that f 1 and f 2 vanish at these saddle points. We write t
expressions foru(l) and v(m) explicitly by solving Eq.
~5.34! as

u~l!5
12c2

2 F2l6S l22
4

12c2D
1/2G ,

v~m!5
12c2

2c F2m6S m22
4

12c2D
1/2G , ~5.36!

where we putl5A4/(12c2)sinu andm5A4/(12c2)sinw.
The saddle points becomeu5 iA12c2eiu,2 iA12c2e2 iu

and v5( i /c)A12c2eiw,2( i /c)A12c2e2 iw. Then, adding
these solutions ofu andv in terms ofu andw, from ~5.35!
we obtain
f

t,

te

r II ~l,m!5
12c2

8N2p2c

1

cosucosw S 2

c
2S 11

1

c2D cos~u2w!

F S 11
1

c2D2
2

c
cos~u2w!G2

1

2

c
1S 11

1

c2D cos~u1w!

F S 11
1

c2D1
2

c
cos~u1w!G2D . ~5.37!

This expression in the large-N limit coincides with the
previous result@23#. The denominator of Eq.~5.37! does not
vanish for l→m. Note thatc is related to the timet as
c5e2t. When t is small, we havec;12t. Then the de-
nominator is approximated as@12(1/c)#21(u2w)2/c
;t21(t/2)(l2m)2, whenl andm are small. Note that we
have to rescalel andm for the time-dependent case by
factor Ae2tsinht5A(12c2)/2, as explained in Eq.~5.11!.
Then we havet211/2(l2m)2 as a denominator, and th
result agrees with@23#. In the time-dependent case in E
~5.1!, l andm are interpreted as one-dimensional space
ordinates.

In order to discuss the oscillatory behavior, we return
expression~5.27!. We then changez2 into Nzc, and obtain

KN~l,m!5cN R du

2p i E dz

2p

1

u1 iz
e2Nf~z,u!, ~5.38!

where f (zu) is given by

f ~z,u!5
c2z2

2~12c2!
1 icmz2 lnz1

u2

2~12c2!
1lu1 ln u.

~5.39!

Note that the variablesz and u are decoupled, and th
saddle-point equations are simplified. Then, using the pr
ous notaionsl5A4/(12c2)sinu and m5A4/(12c2)sinw,
we find the relevant saddle points forz andu from the so-
lutions of ] f /]z50 and] f /]u50,

z5
A12c2

c
e2 iw, 2

A12c2

c
eiw,

~5.40!

u5 iA12c2eiu, 2 iA12c2e2 iu.

For the saddle point values,z5(A12c2/c)e2 iw and
u5 iA12c2eiu, f and the fluctuation determinan
(]2f /]u2)(]2f /]z2) become

f ~z,u!5 i ~u1w!1 1
2 ~e2iu2e22iw!,

1

S ]2f

]u2
]2f

]z2
D 1/25S 12c2

2c
D e~ i /2!~u2w!

Acosu cosw
. ~5.41!

Adding other saddle-points values, we obtain
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KN~l,m!52
A12c2

4pN

e~N/4!~12c2!~l22m2!

Acosu cosw S cos@N„h~u!1h~w!…2~u1w!#1ccos@N„h~u!1h~w!…#

11c2

2c
1cos~u1w!

2
cos@N„h~u!2h~w!…2~u2w!#2ccos@N„h~u!2h~w!…#

11c2

2c
2cos~u2w! D , ~5.42!
-
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e
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e

h,

-

whereh(u)5u1 1
2 sin2u1(1/2N)u. Thus we easily find the

oscillating behavior ofKN(l,m) from the integral represen
tation in the large-N limit. In @27#, this result had been ob
tained through the integral representation of Hermite poly
mials. Our derivation is more direct.

The oscillating behavior of another kernelK̄N(l,m) is
obtained similarly from Eq.~5.27!. If we make the smooth
average for the product ofKN(l,m) and K̄N(l,m), we ob-
tain the previous result, Eq.~5.37!. Also, the expression o
Eq. ~5.42! is the generalization of the one-matrix result
Eq. ~2.34!, which may be obtained in the limitc→1.

For the Fourier transformK(t), the form factor is ob-
tained from Eq.~5.42!. We consider the simple caseE50,

S~t!5E dveivtr~E,E1v!uE50 . ~5.43!

Using Eq.~5.42!, for u50,(2/A12c2)sinw5v, we have

KN~0,v!K̄N~0,v!52
12c2

16p2N2

1

cosw

1

F ~12c!2

4c2
1sin2wG2 f ,

~5.44!

where f is

f5@22 cosw cos@Nh~w!2w#1~11c2!cosNh~w!#2.
~5.45!

The Fourier transform of Eq.~5.43! is an integral overv
which may be performed by taking the residue at the p
v5 i (A12c/c). Then we obtain

E dv eivtKN~0,v!K̄N~0,v!.te2~A12c/c!t. ~5.46!

Thus we find that the form factor has a linear term int, but
modified by e2 (A12c/c) t. Note that the integrand of Eq
~5.43! has poles on both sides of the real axis, and the in
gral does not vanish fort larger than 2a, unlike Eq.~2.7!.
However, for larget, the form factor becomes exponential
small. The Fourier integral of the first termr I also becomes
exponentially small for larget. Therefore, the singularity o
the form factorS(t) at the Heisenberg timet52N in the
one-matrix model is smeared out for the time-depend
case.
-

e

e-

nt

VI. CORRELATION FUNCTIONS
WITH AN EXTERNAL FIELD

The contour-integral method can be applied to the cas
which the Hamiltonian is a sum of a deterministic term a
of a random one@14#,

H5H01V. ~6.1!

H0 is a given deterministic term, andV is a random matrix
with a Gaussian distributionP given by

P~H !5
1

Z
e2~N/2!TrV2

5
1

Z
e2~N/2!Tr~H222H0H1H0

2
!. ~6.2!

Then we deal with a Gaussian unitary ensemble modified
a matrix sourceA52H0. Therefore, keeping the finite ei
genvaluesai of A and puttingH5M , we readily obtain the
correlation function in the presence of the deterministic te
A.

By the contour-integral method we will show that th
connected part of then-point correlation function is also
given by the product of the two-point kernelKN(l,m) in the
case of a nonvanishing external sourceA.

Let us recall the two-point correlation function, whic
becomes from Eq.~2.20! @14#, becomes

UA~ t1 ,t2!52
1

N2 R du dv
~2p i !2

e2~ t1
2/2N!2~ t2

2/2N!2 i t1u2 i t2v

3
1

S u2v2
i t 1
N D S u2v1

i t 2
N D

3 )
g51

N S 12
i t 1

N~u2ag! D S 12
i t 2

N~v2ag! D .
~6.3!

By the shift t1→t12 iuN, we obtain the kernel of the two
point correlation function
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KN~l,m!5
1

NE dt

2p R dv
2p i )g51

N S ag1
i t

N

v2ag

D
3

1

v1
i t

N

e2~N/2!v22~ t2/2N!2 i tl2Nvm. ~6.4!

The connected part of the two-level correlation functi
rc
(2)(l,m) is given by2(1/N2)KN(l,m)KN(m,l). The Fou-
rier transform of the three-point correlation function is giv
by

U~ t1 ,t2 ,t3!5
1

N3 ^Treit1MTreit2MTreit3M&. ~6.5!

We evaluate this quantity by the same procedure for the t
point correlation function. We integrate out the eigenvalu
th
o-
s

of M by the use of Itzykson- Zuber formula. Then it b
comes

U~ t1 ,t2 ,t3!5
1

N3 (
a i51

N )
i, j

~bi2bj !

)
i, j

~ai2aj !

e~N/2!(bi
2
, ~6.6!

wherebi is given

bi5ai2
i t 1
N

d i ,a12
i t 2
N

d i ,a22
i t 3
N

d i ,a3. ~6.7!

We have to consider the casesa15a25a3 and a15a2
Þa3. These cases give thed- function part as Eq.~2.4!.

When alla i ’s are different, the contour-integral represe
tation is straightforward,
U~ t1 ,t2 ,t3!5 R du dv dw

~2p i !3

) S u2ag2
i t 1
N D S v2ag2

i t 2
N D Sw2ag2

i t 3
N D

) ~u2ag!~v2ag!~w2ag!

3

S u2v2
i t 1
N

1
i t 2
N D S u2w2

i t 1
N

1
i t 3
N D S v2w2

i t 2
N

1
i t 3
N D

S u2v2
i t 1
N D S u2v1

i t 2
N D S u2w2

i t 1
N D S u2w1

i t 3
N D S v2w2

i t 2
N D

3
~u2v !~v2w!~w2u!

S v2w1
i t 3
N D

1

i t 1t2t3
e2~ t1

2/2N!2~ t2
2/2N!2~ t3

2/2N!2 i t1u2 i t2v2 i t3w. ~6.8!

Writing the part of the numerators of Eq.~6.8! as

F S u2v2
i t 1
N D S u2v1

i t 2
N D2

t1t2
N2 GF S v2w2

i t 2
N D S v2w1

i t 3
N D2

t2t3
N2 GF S u2w2

i t 1
N D S u2w1

i t 3
N D2

t1t3
N2 G , ~6.9!
ing
the
we have the following disconnected parts:

U~ t1!U~ t2!U~ t3!2U~ t1!U~ t2 ,t3!

2U~ t2!U~ t1 ,t3!2U~ t3!U~ t1 ,t2!. ~6.10!

The remaining term is a connected term. We consider
Fourier transform of this connected partUc(t1 ,t2 ,t3), and
make the changes of variablest1→t12 iuN, t2→t22 ivN,
and t3→t32 iwN. Then the remaining term of Eq.~6.9! be-
comes simply
e

S u1
i t 2
N D S v1

i t 3
N D Sw1

i t 1
N D1S u1

i t 3
N D S v1

i t 1
N D

3Sw1
i t 2
N D . ~6.11!

After cancellation of these terms with the correspond
terms in the denominator, we obtain the connected part of
three-point correlation functionr (3)(l,m,n),

rc
~3!~l,m,n!5KN~l,m!KN~m,n!KN~n,l!

1KN~l,n!KN~n,m!KN~m,l!, ~6.12!
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whereKN(l,m) is given by Eq.~6.4!. Thus we find that the
three-point correlation function has the same form as for
unitary Gaussian ensemble in terms of the kernelKN(l,m),
but the kernel should be modified as Eq.~6.4! for the exter-
nal field case.

In the presence of the external sourceA, the kernel
KN(l,m) in Eq. ~6.4! is not expressed as a sum of produ
of orthogonal polynomials. However, it satisfies remarka
the following equation:

E
2`

`

dm KN~l,m!KN~m,n!5KN~l,n!. ~6.13!

The proof of this equation is shown in Appendix B.
Although the kernelKN(l,m) is no longer expressed i

terms of Hermite polynomials when the external source
present, it still possessesN simple eigenfunctions since, fo
n<N21,

E
2`

`

KN~l,m!Hn~ANm!e2~N/2!m2
dm5Hn~ANl!e2~N/2!l2,

~6.14!

whereHn(x) are the usual Hermite polynomials. Howev
for n>N, Eq.~6.14! does not hold. Indeed in the case of ze
external source, the right-hand side of Eq.~6.14! vanishes.
When the external source is nonzero, the result is nonz
andai dependent. The proof of Eq.~6.14! is given in Appen-
dix B.

Then-point correlationRn(l1 , . . . ,ln) is defined@1# by

Rn~l, . . . ,ln!

5
N!

~N2n!! E •••E PN~l1 , . . . ,lN!dln11•••dlN

~6.15!

PN~l1 , . . . ,lN!5K )
i51

N

Trd~l i2M !L . ~6.16!

Without external source, thisn-point correlation function is
expressed in terms of the kernelKN(l i ,l j ) as

Rn5det„KN~l i ,l j !…, ~6.17!

wherei , j51, . . . ,n. This result was derived Eq.@1#, by the
use of~6.3! since one has

PN~l1 , . . . ,ln!5
1

N!
det„KN~l i ,l j !…, ~6.18!

where i , j51, . . . ,N. For a nonvanishing external sourc
from representation~6.3!, whose derivation is given in Ap
pendix B, it follows that Eq.~6.17! still holds. This result
leads to the universality of the level spacing probabil
P(s). As shown in a previous work@14#, the kernel
KN(l,m) has a universal short-distance behavior

KN~l,m!.
sinFNp~l2m!rS l1m

2 D G
~l2m!p

. ~6.19!
e

y

s

ro

The level-spacing probability distributionP(s) is related to
the probability of having an empty interval with widt
S, E(s), by

P~s!5
d2

ds2
E~s! ~6.20!

and E(s) is obtained from the integration o
PN(l1 , . . . ,lN) in which the region2s/2,l i,s/2 is va-
cant. Thus we write

E~s!5)
i

S E
2`

`

2E
2s/2

s/2 D dl iPN~l1 , . . . ,lN!.

~6.21!

Since the kernelKN(l,m) has a universal form, the same a
the case without external source, we conclude thatP(s) be-
comes the same as GUE.

VII. ZEROS OF THE KERNEL KN„l,µ…

Since at short distance the kernelKN(l,m) exhibits oscil-
lations, and thus changes sign, this kernel must have line
zeros in the (l,m) plane. Note that the solutions of the equ
tion

KN~l,m!50 ~7.1!

are always real in the case of the one-matrix model. In
(l,m) plane the solutions of Eq.~7.1! lie on 2N lines, as
shown in Fig. 1.

When m is large enough,KN(l,m) is approximated by
the product of the Hermite polynomialHN(l) multiplied by
mN, as shown in Eq.~A4!, and this Hermite polynomial ha
N real zeros. TheseN real zeros give rise toN noncrossing
lines in the (l,m) plane for finitem. This behavior is a

FIG. 1. The zeros ofKN(l,m) are plotted as lines in the rea
(l,m) plane, forN55.
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4080 55E. BRÉZIN AND S. HIKAMI
manifestation of the short-distance universality in the lar
N limit. The distances between theseN lines become equa
whenl2m is order of 1/N. TheseN lines are parallel to the
line l5m whenl andm are inside the support of the densi
of state. At the edge, these lines bend, and universality
longer holds.

We have discussed the time-dependent matrix mo
which becomes equivalent to the two-matrix model. In t
two-matrix model, the lines of zeros ofKN(l,m) show a
different behavior. In this case, the kernelKN(l,m) is given
by Eqs.~5.31! or ~5.32!. WhencÞ1, the lines of zeros of
KN(l,m) in the real (l,m) plane are not parallel to th
l5m line, as shown in Fig. 2, in which one can see th
some lines turn over. Consequently along the linel52m,
some real solutions are missing. This behavior is relate
the fact that the short-distance universality does not hold
the two-matrix model.

In the presence of an external source for the one-ma
model, the solutions of Eq.~7.1! are not modified much by
the source if its eigenvalues are smoothly distributed. Thi
also a manifestation of the short-distance universality for
oscillatory behavior. When the support of the eigenvalues
the source are split into separate parts, this is reflected on
position of the lines of zeros, as shown in Fig. 3. The num
of lines of zeros is conserved for an arbitrary distribution
the external eigenvalues.

VIII. DISCUSSION

In this paper, we applied the contour-integral represen
tion for the kernel which characterizes the correlation fu
tions, for the one-matrix model, the time-dependent ma
model, and in the presence of an external source. We in
tigated the form factorS(t), which is the Fourier transform
of the two-level correlation function, by the use of the
contour-integral representations. The universality of the tw
level correlationrc(l,m) for l2m, of order 1/N, immedi-
ately implies the linear behavior ofS(t) in the large-N limit.
We found explicit deviations from the linear behavior
S(t), and found a surprising connection to the Laguerre
semble for the average ofS(t).

Near the Heisenberg timet5tc , a crossover behavior i
observed. For the time-dependent matrix model, which
mapped into an equivalent two-matrix model, the univer
behavior of the one-matrix model is no longer present, a
the singularity att5tc in S(t) is then smeared out. Thi
behavior indicates that near the Heisenberg time, the f
factor is not universal. The nonuniversality was pointed
by the authors of@11# for the case of mesoscopic dirty me
als. Our result is consistent with this nonuniversality. Fina
we investigated the zeros of the kernelKN(l,m) for the two-
matrix model, and found differences between the one-
two-matrix models.

For the matrix model with a nonzero external source,
universality of two-level correlation function holds, a
shown in a previous paper@14#. With the technique of
contour-integral representations, we have also obtained
the higher correlation functions.
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APPENDIX A: INTEGRAL REPRESENTATION
FOR THE KERNEL KN„l,µ…

It is known that the kernelKN(l,m) is a sum of products
of orthogonal polynomialPl(l) andPl(m) @1#. In the case
of the Gaussian unitary ensemble, the orthogonal polyno
als Pl(l) are simply Hermite polynomials. We may writ
these Hermite polynomials as contour integrals

Hl~l!5 R du

2p i

l !

ul11e
lu2~1/2!u2. ~A1!

Their normalization is

E
2`

`

dl Hl~l!Hm~l!e2~1/2!l25A2p l !d l ,m . ~A2!

It is convenient to use at the same time another integral
resentation for these Hermite polynomials obtained by int
ducing an auxiliary variablet,

Hl~l!5E
2`

` dt

A2p
R du

2p i

l !

ul11e
lu1 i tu2~1/2!t2

5E
2`

` dt

A2p
~ i t ! le2~ t2/2!2 i tl1~l2/2!. ~A3!

The kernelKN(l,m) is given by

KN~l,m!5S N

2p D 1/2 (
l50

N21
Hl~ANl!Hl~ANm!

l !
e2~N/2!l2.

~A4!

We use two different expressions~A1! and ~A3! of Hermite
polynomials in the kernel~A4!. The summation of the geo
metric series give@12( i t /u)N#/12( i t /u). Then we shift
t→t/AN andu→2ANu.

KN~l,m!52E
2`

` dt

2p R du

2p i S 2
i t

NuD
N

3
1

u1
i t

N

e2~N/2!u22~1/2N!t22 i tl2Num. ~A5!

This expression coincides with Eq.~2.22!, which has been
derived earlier by Kazakov’s method of a vanishing exter
source.

This integral representation may also be applied to
two-matrix model. The expressions forKN(l,m) and
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K̄N(l,m) in Eq. ~5.27! are obtained from Eqs.~5.31! and
~5.32! by the same integral representations of Eqs.~A1! and
~A3!.

APPENDIX B: PROPERTIES OF THE KERNEL KN„l,µ…
IN THE EXTERNAL SOURCE

We consider the proof of Eq.~6.13!. By the integral rep-
resentation, we write the integrand, which is a product of
kernels, byI ,

I5KN~l,m!KN~m,n!

5E
2`

` dt1
2p R du1

2p i È
`dt2
2p R du2

2p i)g

S ag1
i t 1
N

u12ag

D
3S ag1

i t 2
N

u22ag

D 1

u11
i t 1
N

1

u21
i t 2
N

3e2~N/2!u1
2
2~N/2!u2

2
2~ t1

2/2N!2~ t2
2/2N!2 i t1l2 i t2m2Nu1m2Nu2n.

~B1!

Making the shiftt2→t21 iNu1, and integratingI overm, we
obtain thed(t2) function. Thus the integral of I becomes

E
2`

`

dmI52~21!NE
2`

` dt1
2p R du1

2p i R du2
2p i

3)
g

S ag1
i t 1
N

u22ag

D 1

@u11~ i t 1 /N!#~u22u1!

3e2~ t1
2/2N!2 i t1l2~N/2!u2

2
2Nu2n. ~B2!

FIG. 2. The lines of zeros ofKN(l,m), N55, for the two-
matrix model withc51/2.
e

The contour integral ofu1 can be performed aroun
u152 i t 1 /N, since u1 appears only in the denominato
Then we obtain

E dmI5E dt1
2p R du2

2p i

3)
g

S ag1
i t 1
N

u22ag

D 1

u21
i t 1
N

3e2~N/2!u2
2
2~ t1

2/2N!2 i t1l2Nu2n

5KN~l,n!. ~B3!

The integral equation of Eq.~6.14! is verified similarly.
We evaluate first the following integral involving Hermit
polynomials,

E
2`

`

Hn~ANm!e2~N/2!~m1u!2dm

5E
2`

`

Hn~m!e2~1/2!~m1ANu!2
du

AN

5E
2`

`

Hn~m!S (
l50

`

Hl~m!
~2ANu! l

l !
D e2~1/2!m2 dm

AN

5A2p~2u!nN~n21!/2. ~B4!

Using the expression of Eq.~6.4! for KN(l,m) with Eq.
~B4!, we obtain

FIG. 3. The lines of zeros ofKN(l,m), N55 for the external
source,a1522, a252, a352.25, a452.5, anda552.75
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E KN~l,m!Hn~ANm!e2~N/2!m2
dm

52(21)NA2pN~n21!/2E
2`

` dt

2p R du

2p i

3 )
g51

N S ag1
i t

N

u2ag

D ~2u!n

u1
i t

N

e2~ t2/2N!2 i tl. ~B5!

Whenn,N, this contour-integration ofu converges for
uuu→`; we may then take the residues of the poles outs
of the contour, i.e., the poleu52 i t /N instead of theag’s.
Then, by evauating the residue, and performing thet integra-
tion, we obtain
o

th

,

e

E
2`

`

KN~l,m!Hn~ANm!e2~N/2!m2
dm

5E
2`

` dt

A2p
S i t
N
D nN~n21!/2e2~1/2N!t22 i tl

5Hn~ANl!e2~N/2!l2. ~B6!

Note that the contour integration around infinity does n
converge forn>N; we can no longer take the poles outsi
of the contour, and we obtain a different result.

The kernelKN(l,m) for a nonzero external source can b
written as a determinant; this is useful for numerical calc
lations. Since the kernelKN(l,m) satisfies Eq.~B6!, we
write an expression forKN(l,m) as a determinant, in which
the variablem appears only in the first row of theN3N
matrix. The eigenvalues of external sourceai appears only in
the i th column of the matrix. This is related to the fact th
the exchange betweenai andaj in Eq. ~B7! does not affect
KN(l,m). We can write the matrix element of thei th row as
a polynomial of order of (i21! for l. The first three rows,
for example, are expressed by
KN~l,m!52
1

A2p

e2~N/2!l2

)
i, j

~ai2aj !

detS e2~N/2!a1
2
2Na1m e2~N/2!a2

2
2Na2m . . . e2~N/2!aN

2
2NaNm

l1a1 l1a2 . . . l1aN

~l1a1!
21

1

N
~l1a2!

21
1

N
. . . ~l1aN!21

1

N

. . . . . .

D . ~B7!
hen

ue

f

The matrix elementmi j is (l1aj )
i21 when i is even. When

i is odd, thenmi j is given by (l1aj )
i211C, whereC is a

constant depending uponN. This constant is determined t
be consistent with Eq.~B6!.

As a simple example forN52, we obtain

K2~l,m!52
1

A2p

1

~a12a2!
e2l2

3detS e2a1
2
22a1m e2a2

2
22a2m

l1a1 l1a2
D . ~B8!

It may be interesting to note that there exists values of
ai for which the two-level correlation function
rc(l,m)52KN(l,m)KN(m,l), which is normally negative
may become positive. For instance, in the caseN52, we
considerm50, a250. In this case, from Eq.~B8!, we obtain

K2(l,0)521/A2p(le2a1
2
2l2a1)e

2l2/a1 and
K2(0,l)51/A2p. Then we have

rc~l,0!5
1

8pa1
~le2a1

2
2l2a1!e

2l2. ~B9!
e

This expression may take positive values, for example w
a151 andl,21.6. Expression~B7! is useful for locating
numerically the zeros ofKN(l,m).

Finally let us mention that the contour-integral techniq
which we have used here may be extended to then-point
functions. If we define

U~ t1 , . . . ,tn!5 R Pdui
~2p i !n)i51

n

)
g51

N
@ui2ag2~ i t i /N!#

~ui2ag!

3)
i, j

@ui2uj2~ i t i /N!1~ i t j /N!#

S ui2uj2
i t i
N D @ui2uj1~ i t j /N!#

3)
i, j

~ui2uj !
1

) t i

e2~1/2N!(t i
2
2 i(t iui;

~B10!

then Rn(l1 , . . . ,ln) is obtained by Fourier transform o
U(t1 , . . . ,tn) as

Rn~l1 , . . . ,ln!5E U~ t1 , . . . ,tn!e
2 i(t il idti .

~B11!



o

tt

. A

tt.

B

55 4083SPECTRAL FORM FACTOR IN A RANDOM MATRIX THEORY
@1# M. L. Mehta, Random Matrices, 2nd ed. ~Academic, New
York, 1991!.

@2# F. Dyson, J. Math. Phys.13, 90 ~1972!.
@3# O. Bohigas, inChaos and Quantum Physics, Proceedings

the Les Houches Summer School, Session LII~North-Holland,
Amsterdam, 1991!, p. 91.
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@20# E. Brézin, S. Hikami, and A. Zee, Phys. Rev. E51, 5442

~1995!.
@21# T. Guhr, J. Math. Phys.32, 336 ~1991!.
@22# C. Itzykson and J.-B. Zuber, J. Math. Phys.21, 411 ~1980!.
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