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Spectral form factor in a random matrix theory

E. Brezin! and S. Hikamf
!Laboratoire de Physique Theque, Ecole Normale Sugeure, 24 rue Lhomond, 75231, Paris Cedex 05, France
’Department of Pure and Applied Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153, Japan
(Received 26 August 1996

In the theory of disordered systems the spectral form fa8fa), the Fourier transform of the two-level
correlation function with respect to the difference of energies, is linear{or, and constant for> .. Near
zero and neat it exhibits oscillations which have been discussed in several recent papers. In problems of
mesoscopic fluctuations and quantum chaos a comparison is often made with a random matrix theory. It turns
out that, even in the simplest Gaussian unitary ensemble, these oscillations have not yet been studied there. For
random matrices, the two-level correlation functjef\ 1 ,A,) exhibits several well-known universal properties
in the largeN limit. Its Fourier transform is linear as a consequence of the short-distance universality of
p(N1,\5). However the crossover near zero andequires one to study these correlations for filte=or this
purpose we use an exact contour-integral representation of the two-level correlation function which allows us
to characterize these crossover oscillatory properties. This representation is then extended to the case in which
the Hamiltonian is the sum of a deterministic paty and of a Gaussian random potential Finally, we
consider the extension to the time-dependent d&H63-651X97)08304-9

PACS numbegs): 05.45:+b, 05.40+j

I. INTRODUCTION has an oscillatory behavior. The motivation comes from the
work of Kravtsov and Mirlin[10], who showed that devia-
The properties of universality at short distance of correlations to the Wigner-Dyson larg®-correlation function were
tion functions between eigenvalues for invariant random mapresent in the level statistics of a weakly disordered metal.
trix ensembles[1] were conjectured by Dysof2] many These oscillations, due to subdominant terms, are more vis-
years ago. Modern applications to areas such as fluctuatiorisle if we consider the derivative &(r) with respect tor,
in mesoscopic systems, randomly triangulated surfaces, @ince they become of the same order as the leading linear
guantum chaofg3] led many people to look again into these term. We believe that these oscillatory terms neai0 and
properties. Dyson’s short-distance universality was finallyz=2N, although small, are relevant for discussions of cur-
understood4,5] and also extended in several directions, forrent interest on oscillations in disordered metals or in quan-
instance to smoothed correlation functions at arbitrary distum chaos in nonuniversal regiofis0—13.
tanced4,6], and also to noninvariant ensemb[&$ such as For a discussion of the crossover to the universal linear
ensembles in which matrix elements are independent randobrehavior, we derive an exact expression for finNe of
variables[8]. In this work we consider Gaussian ensemblesS(7) . Our analysis is based upon the recent calculation of
of random Hermitian matrices in the presence of a nonvanthe two-level correlation functiofil4], in which the Kazakov
ishing external source which breaks unitary symmetry. Incontour-integral representatiph5| has been used. This rep-
particular we study a Fourier transform of the two-level cor-resentation has also been used recently for the Laguerre en-
relation function, the spectral form fact®(7). For the semble; it made it easy to characterize the crossover behavior
Gaussian unitary ensemble, in the lafgdimit, this form  near the edge and near-zero energy for the density of state
factor S(7) has a simple linear behavior withup to a criti-  [16]. Here we consider a similar crossover behavior for the
cal valuer,=2N, beyond which it becomes 1. This remark- two-level correlation function or the spectral form factor.
able behavior is due to the short-distance universality of the We also find, after averaging this form factor over the
two-level correlation functiom(\q,\,) [2]. In the problem energy, that the corresponding form fact&{ 7)) is remark-
of quantum chaos, it is known that the level statistics ofably related, through a simple integration, to the density of
chaotic systems in a certain energy range, agrees with th&atep(7) in the Laguerre ensemble; this density is known to
result of a random matrix theory, and the linear behavior ofpossess a universal oscillatory behavior near the ofitfa-
S(7) has been derived by the method of perturbation of pe19]. We extend the form factor calculations to the time-
riodic orbits[9]. dependent case, which is shown to be equivalent to the two-
In this paper, we evaluate this spectral form factor withinmatrix model. In this case, the singular behavior at the
the random matrix theory, in order to characterize the crossHeisenberg time is smeared out.
over to the linear behavior in the largé-imit. We will We further discuss matrix models with an external source
investigate the subdominant term, to the laiyémit, which for the correlation functions. We find interesting characteris-
tic properties of the kerneky(\,u), and its universal be-
havior. The kerneKy(\,u«) has lines of zeros in the real
*Unite propre du Centre National de la Recherche Scientifique(\, ) plane. We briefly study the zeros of the kernels in the
associe al’Ecole Normale Supeeure et al’Universite de Paris- two-matrix model and in the model with external source
Sud. [14].
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Il. UNIVERSAL BEHAVIOR OF THE FORM FACTOR p®(\,u). Therefore, one expects a universal linear behav-

ior in the range in whichr is of orderN.

In a previous pap€rl4] we derived the oscillating short-
distance behavior of Eq2.6) by using a method introduced
by Kazakov. This method gives exact expressions of the cor-
relation functions for finiteN. It is very convenient for char-
acterizing the crossovers in comparison with the standard

where M is an NXN random Hermitian matrix, and the approach based on orthogonal polynomials. It consists of

bracket means an averaging with respect to the Gaussi@fiding a matrix source to the probability distribution, and
distribution. this external source is set to zero at the end of the calcula-

tion. (In some cases one is interested in keeping a finite

1 N external source, as studied recently 14]). We thus modify
P(M)= Zexp — —TrM?2|. (2.2

The two-level correlation functiop®(\, ) for the ran-
dom matrix model is defined by

p(z)()\,,u):<$Tl’5(7\— M)%Tr&(,u,— M)>, (2.2

2 the probability distribution of the matrix by a sourée an
NXN Hermitian matrix with eigenvaluesag, . .. ,a\):
The connected correlation functigi?)(\,«) is obtained ) N
by a subtraction of the disconnected part, which is a product _ - F< N 2
of the density of statep(\) andp(u). This function has a Pa(M) ZAeX ZTWI NTrAM ). 2.9

complicated expression with strong oscillations, which sim-
plifies only in the short-distance limit, in which there are aWe consider the average evolution operator with this modi-

finite number of levels betweex and w, i.e., for N(A — w)
finite in the largeN limit. Introducing the scaling variable
x=7NA—pu)p(zN+3u), (2.3

and taking the larg&¥ limit with a finite x, one findg[1]

1 sirPx
NOA—m)p(N)— p(h)p(u)—z—

PN )= (2.4
The spectral form facto®(7) is defined by
+ oo i
S(T)=f do e p?(E,E+w). (2.5

Using the largeN, smallw limit, we have, leaving aside the
S-function term in Eq.(2.4),

1 si[7Nwp(E)]
- mN? w? '

P2 E-2 w
(E > E+5|=

(2.6

Then the Fourier integral is evaluated easily, since

’7T
+=  sird(a —(2a—t]), |[t|<2a
[ gusttian)y, {5 th, It o
o 0, |t|>2a.
This leads to
l7l  p(E)
-, <27Np(E

0, |7|>27Np(E).

Adding the s-function term of Eq.(2.4), we find thatS(7)
vanishes forr=0. From this result, we find that if is of the
order of N, then the integration ove® is dominated by a

range of order M, and therefore, the approximation of

p@(\, 1) by its short-distance behavidR.6) is justified.

However, if 7 is of the order of 1, then we have to deal with

an integration over a range in whiet is not small, and we

fied distribution

1
UA(t)=<—Tre'tM> (2.10
The density of statg(\) is its Fourier transform
x—fﬂcdt R UNG 2.1
pN)= | S—e UL, (2.11

We first integrate over the unitary matrix which diagonal-
izesM (we may assume, without loss of generality, tAat

a diagonal matrix This is done by the well-known Itzykson-
Zuber integral22]

detlexp(aib;))

deexp(TrAVBVT)= AA)AB)

(2.12

whereA(A) is the Van der Monde determinant constructed
with the eigenvalues oA:

N
A(A>=iljj (a—ay).

(2.13
We are then led to
1 N
Ua(t) =75 A(A NE folrl---drNe'”aA(r1 N
N 2
X ex _EE r ~N> ar|. (2.19

After integrating over the;, we obtain

1N
81

a=1 y*a«a

a,—a,—(it/N)
a,—a,

Ua(t)=

) e~ (tP12N)—ita,
(2.15

Instead of summing oveX terms, one can write a contour

can no longer use the short-distance universal behavior fdntegral in the complex plane,



1

it

du

27Ti y=1

u—a,—(it/N)
u-a,

Ua(t)=

)e—itu—(tZ/ZN).

(2.19

We may now, and only at this stage, let thggo to zero; we
obtain

du . it \N
__ —t2/2N —itu q _
Uo(t)= 39 S (1 Nu) . (2.1

Similarly the two-level correlation functiom®?(\,u) is
obtained from the Fourier transfori(t,,t,), after letting

A go to zero[14],
dt,dt :
@(\,u)= J J’ — e A Taryg(ty,ty),
(2.18
whereU(t,t,) is
1
Ua(ty,ty)= <—Tre't1’\" NTre't2M> (2.19
The same procedure leads to
A(r)
(2)
UA (tl1t2) 01%2 H rIA A)
Xe—NE[(l/Z 24r il +iter, +t2ra2). (2.2@

By integration overr;, we obtain, after subtraction of the
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e~ (N2)u2= (t5/2N) —itah;~ Nuhy

1
=- WKN()\lv)\Z)KN(}\Za)\l)-

We have obtained the integral representation for the kernel
KN()\’ILL)’

== 5§ sl vl

NN, @)= — .27 ) 2@\ Nu
y itefm/z)uz—(l/zmtzfitk*NU#. (2.23
u+—

N

It may be interesting to note that the same integral expres-
sion is obtained through the orthogonal polynomial method.
In Appendix A, we give this derivation. A similar formula
has been obtained by Guh21], who used the method of
integration over Grassmannian variables. At this stage our
formalism does not provide more information, but we shall
see later that it may be extended to the much more difficult
problem of a nonzero external source.

The expression oKy(A1,\2) may be simplified further
by the shiftt;—t+ivN,

disconnected part, a representation in terms of an integral

over two complex variables

i

1

= dudv _ 212N)— (t3/2N) it ju—it v
N

(t
——> €
mi)?

Uo(tl 1t2) =

XU N fu=o Ny 22D
where the contours are taken around 0 andv =0. If we
let the contour include the pole,=u—it,/N, it gives pre-
cisely the disconnnected tertdy(t;+t,), whose Fourier
transform is thes-function part of Eq.(2.4).

We now write the two-level correlation function as the
Fourier transform ofUy(\{,\,). In order to show that it
takes a factorized form, we shift the variablgsandt, to
t;—t;—iuN andt,—t,—ivN. Then one finds

dtl dU Itl
pc(N1,N\p)= Py (2.22
1 —(N/2)v2= (t212N) =it A —
X t e ( v (t12N) Itl)\l NU)\2
Ity
+_
TN

<ot omln

dv

Kn(A1,X2) >

_fdt
) en
it

1——

X—=
Nv

N
) e—(tzlzr\n—ivt—imfr No(Ap—Xp)
it

(2.29

We may now find the short-distance behavior of
p@(\1,\,) in the largeN limit with a finite value of the
variabley=N(\1—\,). There are several procedures to ob-
tain the oscillating universal form. One possibility has been
discussed in14]. Here we follow another procedure for the
purpose of later use. If we substitutedpv —itv, we may
then perform the integration

Kn(N1,A2)
L7 Uzefnvyfwzllz[(lm)f2u]—<1/v)
2w 2@ 1
m—v
1 N
1—N—v). (2.29

In the largeN limit, we may neglect M terms, and expo-
nentiate the term which is a power Nt We obtain
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KN()\l!)\Z) 1 et(i/2)0

- d_v ( Z) 1/Ze(y2/4)v*[1*(Ai/4)]/v+()\1y/2) ( azf) 1 V2 coy

27 2mi\v ' )
at
(2.26
Adding these four saddle-point contributions, we have

We change the contour in the complex plane, and we use the
following result: Kn(N1,A2)

e (N/2)(cos26—cos2p)

1/2
Kl,z(z)—f ZCOS“’boerdx ( ) e % (229 =
0 87N/ cosfcosp

whereK 5(2) is a modified Bessel function. Then we obtain sin20  sin2
s{N(0+¢+ + cos; (6+ @)
N A2\ 12 o - 2 2
Kn(N1 o) = W—ye(”l siny| 1= | (228 1+cod 6+ )

The other ternKy(\5,\ ;) is obtained in a similar way. Thus

i lainog—
in the largeN, finite-y, limit, we obtain 4 SIN(6— ¢+ 35in20— 3sin2¢)]sin; (6- ‘P)

1-cog0—o)
e (a2 22ly  [4—)\? NIESY
p(N1,\p)=— v sin| —5—y|sin ——y (2.34
. When\;—\, is order of 1N, we make approximations in
VA—A] Eq. (2.34),
= 2smz( y). (2.29 a-(2:39
sin20 sin2¢ ) )
We also derive a more precise expression for the kernel 0= et 2 2 =Sin(6= @)+ (sind—sing) cosy
Kn(N1,\) from Eq.(2.22. We have
. ~m(\1—=X2)p(\y), (2.39
Kn(Ng Ao)= J é Zm( ) where p()\1)=\/4—)\12/277, and the denominator of Eq.

(2.34) is approximated as tcos(@— ¢)=1/2sirf(0— ¢).
Then, in the largeN limit for fixed N(A;—\,) we obtain the

e —(N/2)v2=(t%/2N) —ith; — No),

X it short-range universal form of E§R.29. Later we will dis-
v+ — cuss the generalization of ER.34) to the time dependent
N case.
iN We now consider the form fact@(7), which is defined
f 5 o e N, (230 by Eg. (2.5. From the expressions oKy(0,0) and

Kn(w,0) in Eg.(2.295, we have
wheref is

1 du dv gler
) S(7)=— | dw
v v 27TJ' § (2i)?
f—7+5+|t)\1+v)\2—|nt+|nv. (2.3) \/——ZU\/——ZU

The saddle-point equations férbecome < o (N20262/2(UN)~ 20] ~ [ (Nu- 1220 (UN) 2]

of 1
—=v+N\+—=0, 1\N 1\N
dv v 1-—| [1——] . (2.3
Nu Nov
1 s
—=t+i\;— —=0, (2.32 In the largeN limit, if 7is of the order ofN, we may use
Jt t the previous expressions for rederiving the universal short-
Four solutions are obtained:=ie'® p=—ie~1¢ t=ei¢ distance behavior in Eq2.29, and obtain the linear behav-

ior up to 7=2N. However, for finiteN, this function is com-

- il : —9 —9 i
andt=—e . We define,;=2sing and =2 sinp. The bohcated and we need the study of the oscillating part based

Gaussian fluctuation around the saddle point is evaluated

A Eqg.(2.36.
1 et(i2e¢
= (2.33 lll. OSCILLATORY BEHAVIOR OF THE FORM FACTOR
(aZf ) "2 cosp We first inte [ ifti
_ grate outw in Eq. (2.36), and by shifting
2 u—(1/N)u andv— (1/N)v, we obtain



55 SPECTRAL FORM FACTOR IN A RANDOM MATRIX THEORY 4071
1 fﬁ dudo 1 i (27|12 3.9
7= -T u:v = — —_ —= .
S(7) /2’7TN2 (27Ti)2 2 2\2+7
1 The three other solutions are obtained by the replacements

i— —i and7— —7. Therefore, it is sufficient to consider the
first case explicitly, and make the necessary replacements at
the end for the other solutions. The quanfiypbecomes

X
Vo (1-2u)+ (u—1)4(1-2v)

1\N 1\N
X|1— —) (1——) , (3.2 iT
u v D= . 3.9
4-7° 49
whereD is given by
For this saddle pointf becomes
LA C ol 3.2 f=i[260—sin(20)]- 2] (3.10
~ 120 T 120 3.2 =i[ sin(26)]— 2, )

where we have putr=2cod. The fluctuation around this

A quasilinear behavior with small oscillations follows gaqdle point is obtained by the consideration of the second
from this expression. It is interesting first to compute thisgerivatives with respect ta andv. They are

contour integral(3.2) for finite N. We have evaluated, for

example, theN=7 case. The correction to the linear behav- 92f
ior is small, but the derivative o8(7) with respect tor
shows an oscillating behavior. Returning to the analytic cal-

5*f _2i(2+7)3/2<2

wu? - w? o \7 7

T

culation we can obtain exact expressions for this oscillatory

behavior by a saddle-point analysis of H&.1). For this
purpose, we scale by 7=N7. Then we have

1 du dv
S(T)_ \/;N2§ (27”)2
1

e N (3.3

X
Vo (1-2u)+ (u—1)4(1-2v)

where the exponertt is

f—?2 In| 1 ! In| 1 !
—E—n —G—n —;.

In the largeN limit, we look for the saddle points af and
v in the complex plane. They are obtained by

(3.9

of of
au - v

=0. (3.5

We thus obtain the two equations

(1-2w)? 72  (1-2v)* 7?2 a6
wi-w? D2 vAiep2 b2 %9
As solutions of these equations, we have
1-2u . 1-2v 3
u(l—u) “v(l-v) 3.7

(3.11
Pt 4i (2+7)%
ugw 7 (2=

The Gaussian fluctuations around the saddle point produce
the inverse of the square root of a determinant, which is

P*f\2 [ 9%f \?
m_ | | || — 4
detf (auz (auav 4(2+71)%. (3.12
Thus from this result we obtain
g~ IN(26—sin26)
S(7)~
J1-2u\1- 20D detf"N3
i 1 ) )
~ e—lN(20—S|n20)_
2 \/2i sin26(2+2 cox)N®
(3.13

We now add the other solutions by making the replacements
i——i and7— —7, which corresponds t6— 6+ 7. Adding
these terms, we have

aa
co Z_ N(260—sin26)

N3v/2 sin26

1 1

Sa(7)=

. (319

X +
(2+2 co¥) (2—2 co9)

There are four solutions to these equations, but two of them

only are saddle pointga) for the (+) caseu=uv; and(b) for
the (=) caseu=v/(2v—1). Althoughv =(1—u)/(1—2u)

for the (+) case and =1—u for the (—) case are solutions,

they are not saddle points, sind®@ vanishes. Casda),

u=v, still leaves us with four different solutions. The first

one is

where 7=2co9; thus #=0 corresponds tor=2, while
0= /2 corresponds to=0.

Case(b) is quite similar. We have
2_’; 1/2
2+7

2+7\ 12
E (ﬁ) . (3.13

N —

_1+ 1
U_E , U—E
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Using the notatioir=2 cod, we obtain 1 ) dudv . ir\N
<S(T)>:WZE_T/N (2 i) e—lr(u—v)(l_N_u)
f=i(26—sin26) — mi (3.16 m
ir\N 1
and X 1+m a2 (4.4
) [umo-]
D= 3.17
Ja—> ' Replacingu by 7 u andv by 7 v, and puttingr®=x, we have
detf” becomes _ 1 fﬁdu dy e MmN 1 i\
<S(X)>_m (277_')2 ( i\2 m
(921: 2 (921: 2 - _N
n_|__ | _ — _ =252
deff _<¢9u2> (_&u&v) 4(4—7%)°.  (3.18 .
L X| 14+ — (4.5
Adding the four terms obtained by— —7 andi— —i, we No

have . R . ; .
Taking two derivatives with respect g we obtain a simple

- factorized expression
co{ N(26—sin26) — NW_Z)

dX(s(x)) e N [ du i \N[dv
)= — 3.19 — _  aixul g _ _alxv
So(7) 2\TN3(4—72)3/4 319 dx? N? f#zwie 1 Nu) fﬁzwie
From these analyses, we obtain the oscillating part of «|1 +i_ N
S(7) in the largeN limit. It is a sum of S,(7) and Sy(7). Nv
Noting that the linear part d&(7) in Eq.(2.8) is of the order —xIN 2
2_~ . Nt ; : e d X
7/IN“="7/N, we find that the oscillating part is a nothing but - _LN(_) (4.6)
a correction of order . However, if we take a derivative, it N* |dx “\N/ ]’

becomes of the same order as the linear term. We also find ] )

that when7 is close to 2, the coefficient of the oscillating WhereLn(x) is a Laguerre polynomial. Remarkably enough,
part of S(7) becomes large, as shown in Eq8.14 and  @n |dent|gal expression has been fognd earlier, bu_t for a com-
(3.19, and even diverges at=2. Therefore, there should be pletely Q|ﬁerent ensemble and a.dlfferer_n quantity. Indeed
again a crossover near the critical=2N. Up to now we expression(4.6) has been found in previous v_vork_ on the
have considered a fixed ener@=0. In Sec. IV, we will Laguerre ensemble of random matri¢&8], in which it was

instead take an average ovgr and see that the expression the derivative of the density of state. The Laguerre ensemble,
for the form factor simplifies. also called the chiral Gaussian unitary ensent@lelGUE),

since eigenvalues appear by pairs of opposite signs, thus has
a curious relation to the Gaussian unitary ensen(GIgE):
the form factor(S(7)) in the GUE is related, for any finite
We will now consider the average &(r) over E, by N, to the density of statp(7) of the CHGUE. We have not
simply integrating oveE, been able to find a direct proof of this exact relation valid for
any finite N, without calculating both expressions and veri-
+oo fying that they are identical.
(S( 7-)>=f dES 7). 4.1 The oscillating behavior of Eq4.6) is similar to that of
"” S(7). This oscillation in{S( 7)) is slightly different from the
proposal by Kravtsov and Mirlif10], which is a simple
sin(7) oscillation. Our resuli{4.6) is not a sine oscillation.
The oscillating behavior of the density of state for the La-
guerre ensemble near the origin can be seen in Fig[270f
In the largeN limit, we know that the oscillations of the
S(T):f de einp(E’E+w):f dt,e HETITEY (1, , 7). density of state near zero energy become universal, and are
given in terms of Bessel functions. In view of the previous
(4.2 correspondence we now have to consider the variabiean
) ) ] ) energy(although it is a time in the GUE problemNear zero
Thus the integration oveE gives simply energy, the density of state of the Laguerre ensemble is given

by

(s(= [ ae dtle_i(tl”)EUO“l'T):UO(‘”)('4 ; p(7) =337 + ()], @7

IV. AVERAGE OF THE FORM FACTOR

Remarkably, we find that thi&S(7)) is given analytically in
terms of known functions.
From Egs.(2.5 and(2.18), S(7) is written as

and it shows an oscillating behavior around 1. Consequently,
Then we write the following contour-integral representationone understands that the integral of this density of state is
for (S(7)) from Eq.(3.19: proportional tor. This is why we have obtained a linear
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behavior for(S(7)). However, since the density of state for method, which can show explicitly that this equivalence to
largeN is a semicircle, and not a constant, its integral is notwo-matrix model holds for any finitél.

longer proportional tor. Indeed, in the larg& limit, by By considering the HamiltoniaHl,
integrating the semicircle line, we have

H=1Tr(p2+M?), (5.3
- x \2]1/2
(S(n)= fo dX1-| 58 wherep=M andM is anNXN Hermitian matrix, we write
U(a,B) in Eq.(5.2) as
SEE
T —| == arcsin -— 1 . ,
_ 2N N 2N 48 U(a,B)= W<O|thl(TrelaM)eH(tzftl)(TrelﬂM)efHt2|o>.
4N 2 ' '
(5.9
Beyond the critical value=2N, it remains equal to 1, and it : . .
approaches this limit smoothly. Therefore, taking into ac-We use the path-integral formulation, and define
count the fact that the density of state is not constant, the 5 5o,
singularity is smoothed out. Near zero energy, the oscillatory (Ale #"|B)= | _ DMe™ (WATr/g(M +M%dt
behavior of(S(7)), following from the Bessel functions of M(B)=AM(0)=B 5.5

Eq. (4.7), becomes universal. If6], by the same contour-

integral representation, we showed that there is a CroSSOVeHan (o, B) is expressed by
from the bulk to the zero-energy region, which is described

universally by function(4.7). We have also found, in a 1 _
model consisting of a lattice of coupled matrices, that this U(«a,B)= WJ dAdB(0|eM1|A)(A|(Tre'eM)eHtz~t)
oscillating behavior is model independent. Near2N, the

crossover behavior has been also studiefll8]. It is given X(treiﬁM)|B><B|e‘H‘2|0>. (5.6
by the square of an Airy functiofsee Eq.(3.37) of [16]];
this crossover is also known to be universal. Noting that the ground-state energy of the free independent

N? fermions isN?/2, we have

V. TIME-DEPENDENT CASE ) )
' . ' (0|th1|A> — o(N?I2)ty o= (12)TrA?. (5.7)
We now proceed to investigate the time-dependent corre-

lation function and its Fourier transform, the dynamical form,o solution ofM =M . becomes
factor. In the largeN limit, the universal form of this time- ’
dependent correlation function has been discu$28d 23. sht _
We will consider this problem by the contour integral repre- M(t)=Bcht+ — (A—Bchpg). (5.9
sentation, which is valid for finit&, and evaluate the form shs
factor S(7) for a fixed timet. For a finitet, we will find that . L
S(7) shows different behavior compared to the previous "n_Ther_1 we are able to write the action in EG.5 by the
; matricesA andB,
ear behavior about.
We consider theNX N Hermitian matrixM, which de- -
pends upon a time The time-dependent correlation function %Trﬁ(M% M2)dt=3Tr(MM)|&
is defined by 0

1 -
1 1 - 2, p2 _
p(A,u;t>=<NTr5[x—M<tl>]NTr5[u—M<t2>]>, 2srpl A TBICET2ABL (69

5.1 ~

®. Denoting 8 by a timet, and taking the fluctuation part, we
wheret=t;—t,, andt, andt, are different times. This is obtain
written as a Fourier transform of the following quantity

Ula.B): et N2/2 _
(@.f) U(oz,,B):W(a) J'dA dB(Tre'*A)
1 ) )
U(a,,8)=m<Tre'“M(t1) Tre!AM(t2)y, (5.2 X (TrelFB)g~ (V2smTH(AZ+ B2 -248] (5 1)

We use a set of variablas and 8 for the Fourier transform Thus the problem reduces exactly to a calculation of the
variables, instead of; andt,. To avoid the confusion, we correlation function for the two-matrix model, in which ma-
uset; andt, as time. tricesA andB are linearly coupled.

We show exactly that the correlation functi@s.l) re- The correlation function for two-matrix model has been
duces to the correlation function of the two-matrix model instudied by D’anna, Brezin, and Z¢27] by the orthogonal
the Gaussian ensemble; the1 problem is described by the polynomial method for finiteN. Although we can use their
two-matrix model. This correspondence may be derived byesult, it is more convenient to use the contour integral rep-
other argumentq26]. Here we follow the path-integral resentation for the correlation function.
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By making the change of variables Af B, anda, 8 by
a factor e 'sht, we obtain a simple expression for Eq. Ua(2)= A(A)E fdrH (r,—
(5.10,

w @~ (NR)(1=c?)%; rP-NZjayr +izr, (5.15

U(a,B)= %J' dA dB TreieA Trei,BBef(l/2)Tr(A2+8272cAB),
(5.11) Therefore, by the contour integration, we have, by letting
' a; go to zero,

where c=e"!. Note that we scaledx and 8 by a factor

Je~'sh, the variables\ and u of the two-point correlation N 1-c du
function should be modified by this factor for the mapping of ol2)= - it 20
the time-dependent case to the two-matrix model. We now

go back to the notation in which two matrices are given by 1z N (izWNI= )~ [ 22N 2]
M; andM,. We denote the matrices andB in Eq. (5.1 X1 1= \/——2 e :
by M; andM,. We introduce the external matri, which is Nuvi-c

coupled to matrixM ;. The Gaussian distribution is given by (5.1

We have the same density of state as the one-matrix case
except for the scaling factor (1¢?),

(.12 p(M)=VI=Zpo(VI— N, (5.17

Hyo=3TrM2+ 3 TrM2—cTrM ;M,+ TrAM; . _ _ _
’ wherepg(N) is the density of state for the one-matrix model.
The density of stat@(\) is given by the Fourier transform In the largeN limit, this density of state becomes

of
1 _ A2
p(\)= 12770 VA—(1—Cc?)\?, (5.18

PA(M{,M _ L
A(M{,M5) ZAe 4

1
UA(z)=<NTre'ZM1>. (5.13

which is normalized to be 1 by the integration.
The calculation of thigp(\) is similar to the one-matrix case. The two-level correlation function is given by
The integration oveM,, which has eigenvalueg, is per-

formed by the help of the ltzykson-Zuber formula. We de- Ke ledzz iz -iz
note the eigenvalues dfl; by r;. The integration oveg ()= w2 Uo(21,22) (5.19
becomes
whereUy(z,,2,) is
f de]1 (gi—gj)e—(N/2>E§i2—CNE§iri 1 1
1<) Uo(21,20)= < NTreilelﬁTrei22M2> . (5.20
— _ Nc /2)2r ) . .
,EIJ (ri=r )e (5.14 By integration over the eigenvalues of M4, and & of
M,, and keeping the eigenvalues of the external matrix
Then we are left with the integration abayt, A, we have the following expression:
|
izy iz,
L H 8= 2= (8.0, 0ja) ~ o7 (ay™ Fi.ay)
Ua(z1,22)= N2 2
e H (a—q))
i<j
w @~ liz1/(1=cP)]a, ~[izo0/(1-¢?)]ag,~ [25/2N(1-c?)] - [25/2N(1 - ¢?)] ~[c212 IN(1=CP)] 0, (5.21)

The double sum for; and «, is divided into two parts. The patt; = «, is written by the contour-integral representation

U! 1 %du 1 i +z2
21,2)=——— O —|1— —|z;+—
al21,22) _ 2\ J 27 Nul™" ¢
iN{z;+ —
c
w @~ lizg/(1=c?)] ~[izze/(1-c?)] Ju—[Z2/2N(1-c?)] —[25/2N(1-c?)] ~[cz17, IN(1-c?)] (5.22

The Fourier transform of this quantity becomes by the change of vaneatdeu| z; +(z,/c)],
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d21d22 | N . 2 2 2 2 . .
f 2 _ N_ e—|(zl+zzc)[zl+(zz/c)]u/(l—c )e—[(zl+zz+2czlzz)/2N(1—c )]—IZl)\—IZZp,. (5_239
i u

This part is further simplified by the change of variabigsto (1/\/1—c?)(z;—c2) andz, to (1/1-c?)(z,—cz;). By
integration overz;, we have

i 1 2 i\ . 211,152 2,122 2\1,2
()\ M) e (N/2) (\—cp) j § ( ) e—|,u,z+Nuz[,u,—()\/c)]e—[|/(l—c )Juz®—(N/2c“)u“z“—[1/2N(1—-c9)]z .
N (1 cz)2 2qi
(5.29
The remaininga; # a, part is given after letting,, go to zero,
c du dv iz, \N iz, \N 2,2
Vo222 == 5> P oozl -] (1o ) | 2 o1 -
212, ] (2mi) Nu cNv ) izq 1z,
cNfu—v——|{u—v+—
N cN
Xe—[izlu/(l—cz)]—[izZCU/(l—cz)]—[zi/ZN(l—cz)]—[z§/2N(1—c2)]‘ (5.25

This expression includes both a disconnected part and a connected part. The disconnected part has a factorized form and it
corresponds to the first term in the bracket. This term, indeed by shifting/c, becomes the product of the density of states
p(N\) andp(u). Therefore, after subtracting this disconnected part, we obtain the connected part

U 1 [ dudv L ile1 iz, \N 1
o(21.:2)= 2 P 52| 1 N cNo iz, 2
uUu—vu W u—vou m
xe—[izlu/(l—cz)]—[izzvc/(l—cz)]—[zi/ZN(l—cz)]—[z%/ZN(l—cz)]' (5.26

where the contour integrals are taken around0 and  We find the previous first pagt' (\,«) of Eq. (5.29 is also
v=0. If we include the contour integration around the poleexpressed by
v=u—iz4/N, we obtain precisely the same term as Eq.
(5.22. Therefore we use this representation for the whole
expression, including the term of E¢6.21), by taking the
contour around botlr=0 andv=u—iz;/N.

The expression for the two-matrix connected correlationvhereKy(X\, ) is given by
function p(z)()\,,u), which is obtained by the Fourier trans- :
form of Uy(z1,2,), has a factorized form when we consider KO, ) =iN(—iN) % f ( ! )
the contribution fromu=0 andv=0. If z; andz, are re- 2
placed byz;=z,—iuN andz,=z,—ivcN, we have a mul-
tiplicative form

1 2
p'(7\,,u)=NKN(A,M)G*N’Z)“’C“) : (5.29

Xef(Nu 22/2c2) [|uz (1- c)]+zuMN7izM

% @~ (NAuZ/e)—[22/2N(1~c?)] (5.30

o2 B dz2 k3 NCoq
(Np)== 27 cuN iz, This kernelKy(\,«) is written as a sum of Hermite polyno-
U+t N mials H,(x),

5 @~ [INUZ2(1— )] ~ [Z2/2N(1 - ¢2)] ~izpp— UNA < li n(BNMH(Bu)
n ]

21
_ = (N2) (1-c)H)u? =
Kn(h,m)=e NZ‘ n!

55277' f dzl( ) 1|21 63

W where 8 = (N/2)(1—c?). The other kerneKy(A\,u) is
given
Xe—[vzczNIZ(l—cz)]—[zi/ZN(l—cz)]—izl)\—uc,uN. 1
— 1 . H,(BMH )
(5.27) Kn(hot) = N97<N/2)(17C2))\22 en n(B )| n(Bu .
n=0 n:
We write this expression as (532

. It follows from these expressions thap'(\,u) and
PN )= — KON, ) KN, ). (5.289  p"(\,u) are invariant under exchange »fand u. The ex-
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pressions of Eqg5.28 and (5.29 for the correlation func-

tion by the kerneKy(\,u) agree with the result obtained by

the method of orthogonal polynomidlga7]. The only differ-
ence is the exponential Gaussian factorkig(\,u) and

Kn(N, ), and this difference disappears for the product of

these two kernels.

In the largeN limit, we expect to recover the usual uni-

versality. We return to the expression of E§.26), and ne-
glect the termdz, /N andiz,/cN in the denominator. We
then exponentiate the powershf The integrals ovez; and

Z, are Gaussian, and this leads to

(1-c?) dudv 1
PN m = f#(zwi)z(u—u)z

> e—[N/2(1—02)](u+[(1—02)/u] +(1-cH)HN)?

__N o2 2,2
X e m(vc+[(l c9)lcv]+(1-c)u)

-G f

We use the saddle points of\) andu(u), which are the
solutions ofgf,du=0 anddf,dv=0, i.e.,

(dzu d)vz( 1 )ze,N[fl(u)Hz(v)]_
il u—v

(5.33

u?+X(1-c?u+(1-c?=0,
(5.34

Taking into account the fluctuations around the saddle point,

we have
1-c? 1 1
1 —
p ()\7M)_ 2’7T2N2 2 [u()\)_U(M)]Z aZfl 0—,21:2 172
? aw?

(5.39

where the sum is taken over four different saddle points; note
that f; and f, vanish at these saddle points. We write the

expressions fou(\) and v(ux) explicitly by solving Eq.

(5.39 as
B 1_C2 +( ) 4 1/2
U()\)— 2 [_)\_ A _1_02) }1
1_C2 ) 4 1/2
v(H)=—%¢ —,U«i(,u« —ﬁ> , (536

where we putx = \/4/(1—c?)sind and u= \4/(1—c?)sine.
The saddle points become=i\1—-c?%'?,—i\1—c%e '’
and v=(i/c)1—c?'¢,—(i/c)y1—c?e'¢. Then, adding
these solutions ofi andv in terms ofd and ¢, from (5.35
we obtain
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1-c? 1 c
8N?7%c coIcosp

cog 60— ¢)

1
1+

p''(\ )=

1+1 2 6 i
2 ECOE( ®)

coq 0+ o)

1
14

2
—+
Cc
J’_

5 |- (5.37)

1+1)+2 0+
2 ECOS( ®)

This expression in the largd-limit coincides with the
previous resulf23]. The denominator of Eq5.37) does not
vanish forA— u. Note thatc is related to the timd as
c=e ' Whent is small, we havec~1—t. Then the de-
nominator is approximated a$l—(1/c)]?+ (68— ¢)?/c
~1t2+ (t/2)(\— u)?, when\ and u are small. Note that we
have to rescale. and w for the time-dependent case by a
factor e 'sinnt=\/(1—c?)/2, as explained in Eq(5.11).
Then we havet?+ 1/2(\ — u)? as a denominator, and the
result agrees with23]. In the time-dependent case in Eg.
(5.1, A andu are interpreted as one-dimensional space co-
ordinates.

In order to discuss the oscillatory behavior, we return to
expression5.27). We then change, into Nzc, and obtain

Kn(N ,u)chjgd—u. dz 1. e Nfzw (538
N 27 ) 27 u+tiz '
wheref(zu) is given by
222 u2
f(z,u)=m+icMz—lnz+m+ku+ln u.

(5.39

Note that the variablegz and u are decoupled, and the
saddle-point equations are simplified. Then, using the previ-
ous notaionsk = v/4/(1—c?)sing and w= 4/(1—c?)sing,

we find the relevant saddle points ferandu from the so-
lutions of 9f/9z=0 anddf/du=0,

1-¢? . 1-¢? .
z= e's, - e'?,
c c
(5.40
u=iyJi-c%'? —iy1—-cle .

For the saddle point valuesz=(\1—c%c)e ¢ and
u=iyJl—-c?%'?, f and the fluctuation determinant
(01 9u?) (9?1 9z%) become

f(z,u)=i(0+¢)+3(e?0—e2¢),

1 1_C2 e(i/2)(67<p)
2f 22| 2 ) N . 64D
( c COY COSg
u? 9z°

Adding other saddle-points values, we obtain
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V1—c? eNa-cA02=1%) | codN(h(6) +h(¢))—(0+ ¢)]+ccog N(h(8) +h(¢))]

KN()\’ll'L): - 2
47TN ‘lcoﬁ co 1+C
% +cog 6+ o)
2c
cogN(h(8)—h(¢))—(0—¢)]—ccogN(h(8)—h(¢))]
- 5 , (5.42
1+c
—cog 60—
e 60— )
|
whereh(6) = 0+ 3sin26+ (1/2N) 6. Thus we easily find the VI. CORRELATION FUNCTIONS
oscillating behavior oKy(A,«) from the integral represen- WITH AN EXTERNAL FIELD
tation in the largeN limit. In [27], this result had been ob-  The contour-integral method can be applied to the case in
tained through the integral representation of Hermite polynowhich the Hamiltonian is a sum of a deterministic term and
mials. Our derivation is more direct. of a random oné14],

The oscillating behavior of another kernkk(\,u) is
obtained similarly from Eq(5.27). If we make the smooth
average for the product dfy(\,x) and Ky(\,u), we ob- H=Ho+V. (6.0
tain the previous result, Eq5.37). Also, the expression of
Eq. (5.42 is the generalization of the one-matrix result of
Eq. (2.34), which may be obtained in the limad—1.

For the Fourier transforniK(7), the form factor is ob-
tained from Eq.(5.42. We consider the simple cage=0,

Hy is a given deterministic term, arMd is a random matrix
with a Gaussian distributio® given by

1
P(H)= > e~ (NI2TV?

S(T)zf dwe' “p(E,E+ w)|g—q. (5.43
1 2 2
— = a—(N2Tr(H2=2HgH+Hg)
Using Eq.(5.42, for 6=0,(2/1—c?)sing=w, we have z°® o ©.2
— 1-c¢® 1 1 _ _ _ o
Kn(0,0)Kn(0,0)=— 1622 1-c)2 5 f, Then we deal with a Gaussian unitary ensemble modified by
cosp | ( (2:) +sire a matrix sourceA=—H,. Therefore, keeping the finite ei-
4c genvaluesy; of A and puttingH =M, we readily obtain the
(5.44 correlation function in the presence of the deterministic term
A.
wheref is By the contour-integral method we will show that the
connected part of the-point correlation function is also
f=[—2 cosp cogNh(¢)— @]+ (1+c?)coNh(¢)]? given by the product of the two-point kern€j(\, ) in the

(5.45  case of a nonvanishing external soufce
Let us recall the two-point correlation function, which,
The Fourier transform of Eq5.43 is an integral overw becomes from Eq2.20 [14], becomes
which may be performed by taking the residue at the pole
w=i(y1—c/c). Then we obtain

1 dudv _ 2. 2, .
B UA(tl vt2) — m é (27” )2 e (t7/2N) — (t5/2N) —itju—ityv
f dw € Ky(0,0)Ky(0,w)=re" (17607 (546

1

x t it
Thus we find that the form factor has a linear termrjrbut u—ov— I—) ( U—v+—
modified by e~ I=9©) 7 Note that the integrand of Eq. N N
(5.43 has poles on both sides of the real axis, and the inte- N it it
gral does not vanish for larger than 2, unlike Eq.(2.7). x 1 ( - ! 1— z_|,
However, for larger, the form factor becomes exponentially y=1 N(u-a,) N(v-a,)
small. The Fourier integral of the first terph also becomes (6.3

exponentially small for large. Therefore, the singularity of

the form factorS(r) at the Heisenberg time=2N in the

one-matrix model is smeared out for the time-dependenBy the shiftt;—t;—iuN, we obtain the kernel of the two-
case. point correlation function
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it of M by the use of Itzykson- Zuber formula. Then it be-
a,t N comes
Kn(hp)= f 27T| v—a,
o LN Iljj(bi—bp B
% |te —(NI2)v2—(t 12N)—ith=Nop (6.4) U(ty,to,t 3) st e(N/2)zbi, (6.6)
vt I (a-a)

i<j

The connected part of the two-level correlation function
pP(\, ) is given by— (IN?)Ky(\, 1) Kn(x,\). The Fou-
rier transform of the three-point correlation function is given

it it it
by b= a— 1 2 3

whereb; is given

Wai,al_ﬁgi,az_ﬁb‘i,ag' (67)

1 ) ) )
U(tlytz,t3)=m<Tre't1MTre't2MTre't3M>- (6.9  We have to consider the cases=a,=a; and a;= a,

# a53. These cases give th® function part as Eq(2.4).
We evaluate this quantity by the same procedure for the two- When alla;’s are different, the contour-integral represen-
point correlation function. We integrate out the eigenvaluegation is straightforward,

itl)
u—a,— —

du dv de
(2mi)3

U(ty,tp,t3)= %

it it it it
(u_v__l+_2)(u_w__1+_3

it, it
(U_W—W-i-W)

N N N N
x it it, it, ity it,
U_U—W)(U—v'f'ﬁ (U—W—W)(U—W'FW (v—W—W)
(u—v)(v—w)(w—u). 1 o (E372N) — (13/2N) — (t3/2N) — it yu—it o —itgw 6.9
it THRS
(U W+W

Writing the part of the numerators of E(65.8) as

ity it, tqits it, its tots ity itg) thts
(U—U_W)(U—U'FW)—W— v—W—W U_W+W N2 U—W_W U—W+W N2 (6.9

we have the following disconnected parts: ity ity ity its ity
U+W U+W W+W)+(U+W U+W)
ity
U(t)U(t2)U(t3) —U(t)U(t2,t3) X\ wH (6.11

—U(tx)U(ty,t3) —U(t3)U(ty,tp).  (6.10

After cancellation of these terms with the corresponding
terms in the denominator, we obtain the connected part of the

The remaining term is a connected term. We consider théhree-point correlation functiop®(\, u,v),

Fourier transform of this connected paut(t,t,,t3), and

make the changes of variables—t;—iuN, t,—t,—ivN, (3) _

andtz;—t;—iwN. Then the remaining term of E¢6.9) be- pe (M s ) =K ) K ) Ky (w 1)

comes simply + Ky, ) Ky(v, ) K, M), (6.12
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whereKy(\,u) is given by Eq.(6.4). Thus we find that the

three-point correlation function has the same form as for the

unitary Gaussian ensemble in terms of the keig(\, ),
but the kernel should be modified as E§.4) for the exter-
nal field case.

In the presence of the external sourfe the kernel

Kn(N, 1) in Eg. (6.4) is not expressed as a sum of products
of orthogonal polynomials. However, it satisfies remarkably

the following equation:

|” dnkamkmn =Ky, 613

The proof of this equation is shown in Appendix B.
Although the kerneKy(\,u) is no longer expressed in

terms of Hermite polynomials when the external source is

present, it still possessés simple eigenfunctions since, for
n=N-1,

f KO, ) Ho(VNg) e~ V2% = 1 (NN )e (VN2
(6.14
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FIG. 1. The zeros oKy(A,u) are plotted as lines in the real
(\,u) plane, forN=5.

The level-spacing probability distributioR(s) is related to
the probability of having an empty interval with width

whereH,(x) are the usual Hermite polynomials. However g E(s), by

for n=N, Eq.(6.14) does not hold. Indeed in the case of zero

external source, the right-hand side of Ef.14) vanishes.

When the external source is nonzero, the result is nonzero

anda; dependent. The proof of E¢6.14) is given in Appen-
dix B.

The n-point correlationR(\ 1, . .. ,\,) is defined1] by

Ra(As + 2 A

N!
=(N——n)!J J PuNgs - ANy e dhy

(6.19
N

Pu(Ng, ... ,)\N)=<i1;[l Tr5(7\i—M)>. (6.16

Without external source, this-point correlation function is
expressed in terms of the kerr€(\; ,\;) as
wherei,j=1, ... n. This result was derived E{1], by the
use of(6.3) since one has

1
PN()\]_, . ,)\n): mdel(KN()\| ,)\J)), (618

wherei,j=1,... N. For a nonvanishing external source,
from representatiori6.3), whose derivation is given in Ap-
pendix B, it follows that Eq.(6.17 still holds. This result

d2
P(s)= d—giE(S)

(6.20
and E(s) is obtained from the integration of
Pn(N1, ... Ay) in which the region—s/2<\;<s/2 is va-

cant. Thus we write

e s/2
E(S):H (f _f lz)d)\iPN()\l, ...,)\N).
e J_g
(6.21)
Since the kerneKy(\,u) has a universal form, the same as

the case without external source, we conclude B{&) be-
comes the same as GUE.

VIl. ZEROS OF THE KERNEL Ky(A,1)

Since at short distance the ker@| (A, 1) exhibits oscil-
lations, and thus changes sign, this kernel must have lines of
zeros in the {, 1) plane. Note that the solutions of the equa-
tion

KN\, 1) =0 (7.9)

are always real in the case of the one-matrix model. In the

leads to the universality of the level spacing probability()\”u) plane the solutions of Eq7.1) lie on 2N lines, as

P(s). As shown in a previous wor14], the kernel
Kn(N, ) has a universal short-distance behavior

|

+u

A
N7(N—p)p| —

(AN—p)m

sin

shown in Fig. 1.

When u is large enoughKy(\,w) is approximated by
the product of the Hermite polynomiédy(A) multiplied by
N, as shown in Eq(A4), and this Hermite polynomial has
N real zeros. ThesB real zeros give rise tdl noncrossing
lines in the §,w) plane for finite x. This behavior is a
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manifestation of the short-distance universality in the large- ACKNOWLEDGMENTS
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longer holds.

We have discussed the time-dependent matrix model,
which becomes equivalent to the two-matrix model. In this
two-matrix model, the lines of zeros &fy(A,u) show a
different behavior. In this case, the kerd@{(A,u) is given It is known that the kernel (X, ) is a sum of products
by Egs.(5.3D or (5.32. Whenc+#1, the lines of zeros of of orthogonal polynomiaP;(\) and P,(«) [1]. In the case
Kn(N, i) in the real §,u) plane are not parallel to the of the Gaussian unitary ensemble, the orthogonal polynomi-
A=u line, as shown in Fig. 2, in which one can see thatals P|(\) are simply Hermite polynomials. We may write
some lines turn over. Consequently along the line— u, these Hermite polynomials as contour integrals
some real solutions are missing. This behavior is related to
the fact that the short-distance universality does not hold in du I! B 2
the two-matrix model. Hi(M)= jg T_H_lew (e, (A1)

i u

In the presence of an external source for the one-matrix
model, the solutions of E(7.1) are not modified much by Their normalization is
the source if its eigenvalues are smoothly distributed. This is
also a manifestation of the short-distance universality for the fx

APPENDIX A: INTEGRAL REPRESENTATION
FOR THE KERNEL Ky(\,p)

oscillatory behavior. When the support of the eigenvalues of d\ H (MH (V) e 2= o) Sm- (A2
the source are split into separate parts, this is reflected on the
position of the lines of zeros, as shown in Fig. 3. The number

of lines of zeros is conserved for an arbitrary distribution oflt IS convenient to use at the same time another integral rep-
the external eigenvalues. resentation for these Hermite polynomials obtained by intro-

ducing an auxiliary variablé,

— oo

o |
VIIl. DISCUSSION H|(>\)=f dt du Mt Qhuitu— (122
]
In this paper, we applied the contour-integral representa- —EN2m ) 2miu
tion for the kernel which characterizes the correlation func- - dt
tions, for the one-matrix model, the time-dependent matrix :f —(it) e~ (P12 —ith+(\12) (A3)
model, and in the presence of an external source. We inves- —N\27

tigated the form factoB(7), which is the Fourier transform

of the two-level correlation function, by the use of theseThe kernelK (), u) is given by
contour-integral representations. The universality of the two-

level correlationp.(\,u) for N — u, of order 1N, immedi- 12 N-1

ately implies the linear behavior & 7) in the largeN limit. KN()\,M)z(—) > H'(\/NM:_"(\/NM) e~ (N2\Z
We found explicit deviations from the linear behavior of 2m 1=0 I
S(7), and found a surprising connection to the Laguerre en-

semble for the average & 7).

Near the Heisenberg time= 7., a crossover behavior is
observed. For the time-dependent matrix model, which w
mapped into an equivalent two-matrix model, the universa[""®
behavior of the one-matrix model is no longer present, and™
the singularity atr=r. in S(7) is then smeared out. This N
behavior indicates that near the Heisenberg time, the form K\, )= — fw ﬂ ﬂ( _ _t)

’ _27T Nu
1

(A4)

We use two different expressiofal) and (A3) of Hermite
é)olynomials in the kernefA4). The summation of the geo-
tric series give[1—(it/u)N]/1—(it/u). Then we shift
t/\N andu— — JNu.

factor is not universal. The nonuniversality was pointed out 27
by the authors of11] for the case of mesoscopic dirty met-

als. Our result is consistent with this nonuniversality. Finally, % _ o~ (N2u? = (U2)t?~ith—Nup (A5)
we investigated the zeros of the kerig|(\,«) for the two- U+ it
matrix model, and found differences between the one- and N

two-matrix models.

For the matrix model with a nonzero external source, theThis expression coincides with E¢R.22), which has been
universality of two-level correlation function holds, as derived earlier by Kazakov's method of a vanishing external
shown in a previous papdrl4]. With the technique of source.
contour-integral representations, we have also obtained all This integral representation may also be applied to the
the higher correlation functions. two-matrix model. The expressions foKy(A,x) and
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FIG. 2. The lines of zeros oKy(\,u), N=5, for the two-

FIG. 3. The li f N=5 for th t I
matrix model withc— 1/2. G.3 e lines of zeros dky(A\,u), 5 for the externa

sourcea;=—2,a,=2,a;=2.25,a,=2.5, andag=2.75

Kn(N, 1) in Eq. (5.27) are obtained from Eq95.31) and
(5.32 by the same integral representations of Héd.) and
(A3).

The contour integral ofu; can be performed around
u;=—it,/N, since u; appears only in the denominator.
Then we obtain

APPENDIX B: PROPERTIES OF THE KERNEL Ky(X\,1)
IN THE EXTERNAL SOURCE

dt; du,
We consider the proof of Ed6.13. By the integral rep- j dul= j o
resentation, we write the integrand, which is a product of the
kernels, byl, ity
y H a.y+ W 1
= KN\, ) Kn(p,) 7\ u—a, ity
Up,+ —
. N
Ity
jw dt; é dU1f dt, du2 &t N w @~ (N5~ (t3/2N) ~it ;A\~ Nupw
.27 ]2 27 —-a
m Tl 7T| y uq y =KN()\,V). (B3)
ity
aHyt . . . - -
« N 1 1 The integral equation of Eq6.14) is verified similarly.
u—a, ity ity We evaluate first the following integral involving Hermite
Uit g Yty polynomials,

« e—(N/2>u§—(N/z)ug—(tilzm—(tg/zm—itlx—itZ#—Nulﬂ—Nuzy

B1 *
(B1) f_ Hn(\/ﬁy)e_m/a(“”)zdu

Making the shiftt,—t,+iNuy, and integrating over u, we

obtain thed(t,) function. Thus the integral of | becomes :J Hn(u)e‘(”’lm”““)zf
— 00 N

dty [ duy [ du . = - d
f dul=—(= 1)NJ 3£ 2mi j{; 27 =J n() 2 Hu(,u)( \/— )>e<1’2>“2—M
. W
it
a,+ 'Wl 1 =V2m(—u)"N""D2 (B4)

<11

5y \ Upy—a, / [up+(ity/N)](uz—uy)

, ) Using the expression of Ed6.4) for Ky(\,u) with Eg.
X @~ (f2N) ~itah = (NI2)up = Nugy, (B2)  (B4), we obtain
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_ 2 e _ 2
f KNO\-:U«)Hn(\/N,U«)e (N/2) dM f_ KN()MM)Hn( \/N,u,)e (N/2)ue dM
:_(_1)N /27TN(n71)/2 * ﬂ ﬂ — J'm i E nN(n*l)/Zef(UZN)’[z*it)\
w2 ] 2mi —2\/27\N
it = Hp(VNN) e~ V2N, (B6)
N | a,tg n . . —
N (=W oo Note that the contour integration around infinity does not
% H A= (| /2N) — it (B5) ;
71\ u—a, it : converge fom=N; we can no longer take the poles outside

u+ N of the contour, and we obtain a different result.

The kernelKy(\,u) for a nonzero external source can be
written as a determinant; this is useful for numerical calcu-
lations. Since the kerneKy(\,u) satisfies Eq.(B6), we
write an expression fokKy(\, ) as a determinant, in which
the variablew appears only in the first row of thB XN

Whenn<N, this contour-integration ofi converges for matrix. The eigenvalues of external souegeappears only in
|u|—; we may then take the residues of the poles outsiddhe ith column of the matrix. This is related to the fact that
of the contour, i.e., the pole=—it/N instead of thea,’s. the exchange betwees) anda; in Eq. (B7) does not affect

. . . ~ Kyn(h,1). We can write the matrix element of thith row as
ggﬁnwzyoi\{zrnatmg the residue, and performingttimzegra a polynomial of order of i(—1) for N. The first three rows,

for example, are expressed by

e—(le)af—Nal,L e—(N/Z)ag—NaZ# o e—(N/z)aﬁ,—NaN,L

1 e (N2 A+ay Atay o \+ay
+ay)?+ — +ay)%+— ... +an)2+ —
\/ZWH (a-a)) (A t+ay) N (A +ay) N (A +ay) N

i<j

The matrix elementn;; is ()\+aj)‘*1 wheni is even. When  This expression may take positive values, for example when
i is odd, thenm;; is given by (>\+aj)"1+ C,whereCisa a;=1 and\A<-1.6. Expressior{B7) is useful for locating
constant depending updd. This constant is determined to numerically the zeros dky(\,w).

be consistent with EqB6). Finally let us mention that the contour-integral technique
As a simple example foN=2, we obtain which we have used here may be extended torthmint
functions. If we define

1 I du, ui—a,— (it;/N

Ko\ p) == = ———e* U(ty, ... )= fﬁ —I1 II Lui~a,~ (it /)]
V2m (81— ap) (2mi)"=1 521 (ui—a,)
efa§72al,u efa§72a2/¢ [Ul_UJ_(|t|/N)+(|tJ/N)]
X de . (BY) XLIJ. it;

)\+al )\+a2 Ui_Uj—ﬁ)[Ui—Uj'f'(itj/N)]
It may be interesting to note that there exists values of the XH (u—u) 1 e—(l/ZN)Ztiz—iEtiui.
a; for which the two-level correlation function g ) '

pc(h ) =—Ky(N, ) Ky(me,N), which is normally negative, H ti

may become positive. For instance, in the case2, we

consideru=0, a,=0. In this case, from EqB8), we obtain (B10)
_a2 22
Ko(N,0)=—1/V27(Ae f1—N—a;)e M /a, and  then Ry(\q, ... \,) is obtained by Fourier transform of

K5(0\)=1/{y27. Then we have U(ty, ... ty) as

Ro(A1, ... A =fUt L.ty e EtiNdy
()\e’ai—)\—al)e’)‘z. (89) n( 1 n) (1 n) i

pc()\io)zsﬂ_al (Bll)
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